A Tunnel Crack Identification Algorithm with Convolutional Neural Networks

Author(s):  
Qimin Gong ◽  
Yaodong Wang ◽  
Zujun Yu ◽  
Liqiang Zhu ◽  
Hongmei Shi ◽  
...  
Materials ◽  
2021 ◽  
Vol 14 (11) ◽  
pp. 2801
Author(s):  
Bartosz Miller ◽  
Leonard Ziemiański

The aim of the following paper is to discuss a newly developed approach for the identification of vibration mode shapes of multilayer composite structures. To overcome the limitations of the approaches based on image analysis (two-dimensional structures, high spatial resolution of mode shapes description), convolutional neural networks (CNNs) are applied to create a three-dimensional mode shapes identification algorithm with a significantly reduced number of mode shape vector coordinates. The CNN-based procedure is accurate, effective, and robust to noisy input data. The appearance of local damage is not an obstacle. The change of the material and the occurrence of local material degradation do not affect the accuracy of the method. Moreover, the application of the proposed identification method allows identifying the material degradation occurrence.


Sensors ◽  
2020 ◽  
Vol 20 (7) ◽  
pp. 2021 ◽  
Author(s):  
Ronghua Fu ◽  
Hao Xu ◽  
Zijian Wang ◽  
Lei Shen ◽  
Maosen Cao ◽  
...  

Crack identification plays an essential role in the health diagnosis of various concrete structures. Among different intelligent algorithms, the convolutional neural networks (CNNs) has been demonstrated as a promising tool capable of efficiently identifying the existence and evolution of concrete cracks by adaptively recognizing crack features from a large amount of concrete surface images. However, the accuracy as well as the versatility of conventional CNNs in crack identification is largely limited, due to the influence of noise contained in the background of the concrete surface images. The noise originates from highly diverse sources, such as light spots, blurs, surface roughness/wear/stains. With the aim of enhancing the accuracy, noise immunity, and versatility of CNN-based crack identification methods, a framework of enhanced intelligent identification of concrete cracks is established in this study, based on a hybrid utilization of conventional CNNs with a multi-layered image preprocessing strategy (MLP), of which the key components are homomorphic filtering and the Otsu thresholding method. Relying on the comparison and fine-tuning of classic CNN structures, networks for detection of crack position and identification of crack type are built, trained, and tested, based on a dataset composed of a large number of concrete crack images. The effectiveness and efficiency of the proposed framework involving the MLP and the CNN in crack identification are examined by comparative studies, with and without the implementation of the MLP strategy. Crack identification accuracy subject to different sources and levels of noise influence is investigated.


2021 ◽  
Vol 2021 ◽  
pp. 1-16
Author(s):  
Wenting Qiao ◽  
Hongwei Zhang ◽  
Fei Zhu ◽  
Qiande Wu

The traditional method for detecting cracks in concrete bridges has the disadvantages of low accuracy and weak robustness. Combined with the crack digital image data obtained from bending test of reinforced concrete beams, a crack identification method for concrete structures based on improved U-net convolutional neural networks is proposed to improve the accuracy of crack identification in this article. Firstly, a bending test of concrete beams is conducted to collect crack images. Secondly, datasets of crack images are obtained using the data augmentation technology. Selected cracks are marked. Thirdly, based on the U-net neural networks, an improved inception module and an Atrous Spatial Pyramid Pooling module are added in the improved U-net model. Finally, the widths of cracks are identified using the concrete crack binary images obtained from the improved U-net model. The average precision of the test set of the proposed model is 11.7% higher than that of the U-net neural network segmentation model. The average relative error of the crack width of the proposed model is 13.2%, which is 18.6% less than that measured by using the ACTIS system. The results indicate that the proposed method is accurate, robust, and suitable for crack identification in concrete structures.


2015 ◽  
Vol 21 (5) ◽  
pp. 591-604 ◽  
Author(s):  
Kamil Aydin ◽  
Ozgur Kisi

Applicability of artificial neural networks is examined in determining the natural frequencies of intact beams and crack parameters of damaged beams. Multi-layer perceptron (MLP) and radial basis neural networks (RBNN) are utilized for training and validation of input data. In the first part of the study, the first four frequencies of free vibration are predicted based on beam properties by the networks. Showing the effectiveness of the neural networks in predicting the vibrational frequencies, the second part of the study is carried out. At this stage of the inverse problem, the frequencies and mode shape rotation deviations in addition to beam properties are used as input to the networks to determine the crack parameters. Different hidden nodes, epochs and spread values are tried to find the optimal neural networks that give the lowest error estimates. In both parts of the study, the RBNN model performs better. The robustness of the network models in the presence of noise is also shown. It is shown that the optimal MLP network predicts the crack parameters slightly better in the presence of noise. As a conclusion, the trained RBNN model can be used in health monitoring of beam-like structures as a crack identification algorithm.


Sign in / Sign up

Export Citation Format

Share Document