Relating short-term traffic forecasting to current system state using nonparametric regression

Author(s):  
R.E. Turochy ◽  
B.D. Pierce
CICTP 2017 ◽  
2018 ◽  
Author(s):  
Xinchao Chen ◽  
Si Qin ◽  
Jian Zhang ◽  
Huachun Tan ◽  
Yunxia Xu ◽  
...  

2021 ◽  
pp. 102101
Author(s):  
Kailong Zhang ◽  
Chenyu Xie ◽  
Yujia Wang ◽  
Sotelo Miguel Ángel ◽  
Thi Mai Trang Nguyen ◽  
...  

Electronics ◽  
2021 ◽  
Vol 10 (10) ◽  
pp. 1151
Author(s):  
Carolina Gijón ◽  
Matías Toril ◽  
Salvador Luna-Ramírez ◽  
María Luisa Marí-Altozano ◽  
José María Ruiz-Avilés

Network dimensioning is a critical task in current mobile networks, as any failure in this process leads to degraded user experience or unnecessary upgrades of network resources. For this purpose, radio planning tools often predict monthly busy-hour data traffic to detect capacity bottlenecks in advance. Supervised Learning (SL) arises as a promising solution to improve predictions obtained with legacy approaches. Previous works have shown that deep learning outperforms classical time series analysis when predicting data traffic in cellular networks in the short term (seconds/minutes) and medium term (hours/days) from long historical data series. However, long-term forecasting (several months horizon) performed in radio planning tools relies on short and noisy time series, thus requiring a separate analysis. In this work, we present the first study comparing SL and time series analysis approaches to predict monthly busy-hour data traffic on a cell basis in a live LTE network. To this end, an extensive dataset is collected, comprising data traffic per cell for a whole country during 30 months. The considered methods include Random Forest, different Neural Networks, Support Vector Regression, Seasonal Auto Regressive Integrated Moving Average and Additive Holt–Winters. Results show that SL models outperform time series approaches, while reducing data storage capacity requirements. More importantly, unlike in short-term and medium-term traffic forecasting, non-deep SL approaches are competitive with deep learning while being more computationally efficient.


2016 ◽  
Vol 2016 ◽  
pp. 1-14 ◽  
Author(s):  
Mingjun Deng ◽  
Shiru Qu

There are many short-term road travel time forecasting studies based on time series, but indeed, road travel time not only relies on the historical travel time series, but also depends on the road and its adjacent sections history flow. However, few studies have considered that. This paper is based on the correlation of flow spatial distribution and the road travel time series, applying nearest neighbor and nonparametric regression method to build a forecasting model. In aspect of spatial nearest neighbor search, three different space distances are defined. In addition, two forecasting functions are introduced: one combines the forecasting value by mean weight and the other uses the reciprocal of nearest neighbors distance as combined weight. Three different distances are applied in nearest neighbor search, which apply to the two forecasting functions. For travel time series, the nearest neighbor and nonparametric regression are applied too. Then minimizing forecast error variance is utilized as an objective to establish the combination model. The empirical results show that the combination model can improve the forecast performance obviously. Besides, the experimental results of the evaluation for the computational complexity show that the proposed method can satisfy the real-time requirement.


2016 ◽  
Vol 2016 ◽  
pp. 1-10 ◽  
Author(s):  
Pengpeng Jiao ◽  
Ruimin Li ◽  
Tuo Sun ◽  
Zenghao Hou ◽  
Amir Ibrahim

Short-term prediction of passenger flow is very important for the operation and management of a rail transit system. Based on the traditional Kalman filtering method, this paper puts forward three revised models for real-time passenger flow forecasting. First, the paper introduces the historical prediction error into the measurement equation and formulates a revised Kalman filtering model based on error correction coefficient (KF-ECC). Second, this paper employs the deviation between real-time passenger flow and corresponding historical data as state variable and presents a revised Kalman filtering model based on Historical Deviation (KF-HD). Third, the paper integrates nonparametric regression forecast into the traditional Kalman filtering method using a Bayesian combined technique and puts forward a revised Kalman filtering model based on Bayesian combination and nonparametric regression (KF-BCNR). A case study is implemented using statistical passenger flow data of rail transit line 13 in Beijing during a one-month period. The reported prediction results show that KF-ECC improves the applicability to historical trend, KF-HD achieves excellent accuracy and stability, and KF-BCNR yields the best performances. Comparisons among different periods further indicate that results during peak periods outperform those during nonpeak periods. All three revised models are accurate and stable enough for on-line predictions, especially during the peak periods.


Author(s):  
Yunxuan Li ◽  
Jian Lu ◽  
Lin Zhang ◽  
Yi Zhao

The Didi Dache app is China’s biggest taxi booking mobile app and is popular in cities. Unsurprisingly, short-term traffic demand forecasting is critical to enabling Didi Dache to maximize use by drivers and ensure that riders can always find a car whenever and wherever they may need a ride. In this paper, a short-term traffic demand forecasting model, Wave SVM, is proposed. It combines the complementary advantages of Daubechies5 wavelets analysis and least squares support vector machine (LS-SVM) models while it overcomes their respective shortcomings. This method includes four stages: in the first stage, original data are preprocessed; in the second stage, these data are decomposed into high-frequency and low-frequency series by wavelet; in the third stage, the prediction stage, the LS-SVM method is applied to train and predict the corresponding high-frequency and low-frequency series; in the last stage, the diverse predicted sequences are reconstructed by wavelet. The real taxi-hailing orders data are applied to evaluate the model’s performance and practicality, and the results are encouraging. The Wave SVM model, compared with the prediction error of state-of-the-art models, not only has the best prediction performance but also appears to be the most capable of capturing the nonstationary characteristics of the short-term traffic dynamic systems.


Sign in / Sign up

Export Citation Format

Share Document