A new photoacoustic imaging platform for potential applications in prostate cancer

Author(s):  
Nidhi Singh ◽  
Emmanuel Cherin ◽  
Yohannes Soenjaya ◽  
Maninder Matharoo ◽  
Brandon Brisbane ◽  
...  
Urology ◽  
2017 ◽  
Vol 108 ◽  
pp. 212-219 ◽  
Author(s):  
Akio Horiguchi ◽  
Masayuki Shinchi ◽  
Akiko Nakamura ◽  
Takatsugu Wada ◽  
Keiichi Ito ◽  
...  

2021 ◽  
Author(s):  
Dong-Lin Yang ◽  
Ya-jun Zhang ◽  
Liu-jun He ◽  
Chun-sheng Hu ◽  
Li-xia Gao ◽  
...  

Abstract Demethylzeylasteral (T-96), a pharmacologically active triterpenoid monomer extracted from Tripterygiumwilfordii Hook F (TWHF), has been reported to exhibit anti-neoplastic effect on several types of cancer cells. However,whether it has the anti-tumour capability in human Prostate cancer (CaP)cells and what’s the precise regulatory mechanisms underlying the anti-proliferation effect of T-96 on human CaP. In the current study, T-96 exerted significant cytotoxicity to CaP cells in vitro and induced cell cycle arrest at S-phase in a dose-dependent manner. Furthermore, mechanistic investigation indicated that through inducing endoplasmic reticulum (ER) stress caused by intracellular accumulation of reactive oxygen species (ROS), T-96 significantly promoted autophagy initiation while blocked the autophagic flux and finally caused extrinsic apoptosis in CaP cells, implying that ER stress induced byT-96 initiated caspase dependent apoptosis to inhibit CaP cells. Moreover, as a novel lethal ER stress inducer, T-96 was capable to enhance the sensitivity of CaP cells to chemotherapeutic drug cisplatin. Taken together, our data implied that T-96 is a novel ER stress and autophagy modulator, and has the potential applications for CaP therapy in clinic.


2020 ◽  
Vol 13 (03) ◽  
pp. 2030005
Author(s):  
Zhao Lei ◽  
Yun Zeng ◽  
Xiaofen Zhang ◽  
Xiaoyong Wang ◽  
Gang Liu

Noninvasive molecular imaging makes the observation and comprehensive understanding of complex biological processes possible. Photoacoustic imaging (PAI) is a fast evolving hybrid imaging technology enabling in vivo imaging with high sensitivity and spatial resolution in deep tissue. Among the various probes developed for PAI, genetically encoded reporters attracted increasing attention of researchers, which provide improved performance by acquiring images of a PAI reporter gene’s expression driven by disease-specific enhancers/promoters. Here, we present a brief overview of recent studies about the existing photoacoustic reporter genes (RGs) for noninvasive molecular imaging, such as the pigment enzyme reporters, fluorescent proteins and chromoproteins, photoswitchable proteins, including their properties and potential applications in theranostics. Furthermore, the challenges that PAI RGs face when applied to the clinical studies are also examined.


Micromachines ◽  
2020 ◽  
Vol 11 (10) ◽  
pp. 928 ◽  
Author(s):  
Haoran Wang ◽  
Yifei Ma ◽  
Hao Yang ◽  
Huabei Jiang ◽  
Yingtao Ding ◽  
...  

Photoacoustic imaging (PAI) is drawing extensive attention and gaining rapid development as an emerging biomedical imaging technology because of its high spatial resolution, large imaging depth, and rich optical contrast. PAI has great potential applications in endoscopy, but the progress of endoscopic PAI was hindered by the challenges of manufacturing and assembling miniature imaging components. Over the last decade, microelectromechanical systems (MEMS) technology has greatly facilitated the development of photoacoustic endoscopes and extended the realm of applicability of the PAI. As the key component of photoacoustic endoscopes, micromachined ultrasound transducers (MUTs), including piezoelectric MUTs (pMUTs) and capacitive MUTs (cMUTs), have been developed and explored for endoscopic PAI applications. In this article, the recent progress of pMUTs (thickness extension mode and flexural vibration mode) and cMUTs are reviewed and discussed with their applications in endoscopic PAI. Current PAI endoscopes based on pMUTs and cMUTs are also introduced and compared. Finally, the remaining challenges and future directions of MEMS ultrasound transducers for endoscopic PAI applications are given.


2010 ◽  
Vol 33 (1) ◽  
pp. 3-32 ◽  
Author(s):  
Yang Liu ◽  
Metasebya Solomon ◽  
Samuel Achilefu

Sign in / Sign up

Export Citation Format

Share Document