A novel method for extrinsic parameters estimation between a single-line scan LiDAR and a camera

Author(s):  
Pakapoj Tulsuk ◽  
Panu Srestasathiern ◽  
Miti Ruchanurucks ◽  
Teera Phatrapornnant ◽  
Hiroshi Nagahashi
2021 ◽  
Vol 11 (13) ◽  
pp. 6014
Author(s):  
Kai Guo ◽  
Hu Ye ◽  
Junhao Gu ◽  
Honglin Chen

The aim of the perspective-three-point (P3P) problem is to estimate extrinsic parameters of a camera from three 2D–3D point correspondences, including the orientation and position information. All the P3P solvers have a multi-solution phenomenon that is up to four solutions and needs a fully calibrated camera. In contrast, in this paper we propose a novel method for intrinsic and extrinsic parameter estimation based on three 2D–3D point correspondences with known camera position. Our core contribution is to build a new, virtual camera system whose frame and image plane are defined by the original 3D points, to build a new, intermediate world frame by the original image plane and the original 2D image points, and convert our problem to a P3P problem. Then, the intrinsic and extrinsic parameter estimation is to solve frame transformation and the P3P problem. Lastly, we solve the multi-solution problem by image resolution. Experimental results show its accuracy, numerical stability and uniqueness of the solution for intrinsic and extrinsic parameter estimation in synthetic data and real images.


2021 ◽  
pp. 2813-2823
Author(s):  
Firas A. Hadi ◽  
Zaid F. Makki ◽  
Rafa A. Al-Baldawi

The main objective of this paper is present a novel method to choice a certain wind turbine for a specific site by using normalized power and capacity factor curves. The site matching is based on identifying the optimum turbine rotation speed parameters from turbine performance index (TPI) curve, which is obtained from the higher values of normalized power and capacity factor curves. Wind Turbine Performance Index a new ranking parameter, is defined to optimally match turbines to wind site. The relations (plots) of normalized power, capacity factor, and turbine performance index versus normalized rated wind speed are drawn for a known value of Weibull shape parameter of a site, thus a superior method is used for Weibull parameters estimation which is called Equivalent Energy Method (EEM).


Sensors ◽  
2020 ◽  
Vol 20 (10) ◽  
pp. 2841
Author(s):  
Mohammad Ali Zaiter ◽  
Régis Lherbier ◽  
Ghaleb Faour ◽  
Oussama Bazzi ◽  
Jean-Charles Noyer

This paper details a new extrinsic calibration method for scanning laser rangefinder that is precisely focused on the geometrical ground plane-based estimation. This method is also efficient in the challenging experimental configuration of a high angle of inclination of the LiDAR. In this configuration, the calibration of the LiDAR sensor is a key problem that can be be found in various domains and in particular to guarantee the efficiency of ground surface object detection. The proposed extrinsic calibration method can be summarized by the following procedure steps: fitting ground plane, extrinsic parameters estimation (3D orientation angles and altitude), and extrinsic parameters optimization. Finally, the results are presented in terms of precision and robustness against the variation of LiDAR’s orientation and range accuracy, respectively, showing the stability and the accuracy of the proposed extrinsic calibration method, which was validated through numerical simulation and real data to prove the method performance.


Author(s):  
Huawei Wang ◽  
◽  
De Xu

In the novel method we propose for determining extrinsic parameters for active stereovision, we first map the relationship between rotational and yaw angles based on least squares fitting, then optimize the rotational axis between two cameras using the Levenberg-Marquardt algorithm. Extrinsic parameters are then easily derived for active stereovision based on the mapping model without complex recalibration. The results of experiments confirmed our proposed method's feasibility.


2007 ◽  
Vol 15 (5) ◽  
pp. 2421 ◽  
Author(s):  
Barry Cense ◽  
Mircea Mujat ◽  
Teresa C. Chen ◽  
B. H. Park ◽  
Johannes F. de Boer

2012 ◽  
Vol 1 (1) ◽  
pp. 36-42 ◽  
Author(s):  
Ming-jie Zheng ◽  
He Yan ◽  
Bing-chen Zhang ◽  
Feng-jun Zhao ◽  
Ru-liang Yang

2020 ◽  
Vol 31 (4) ◽  
pp. 1625-1647
Author(s):  
Mingming Tian ◽  
Guisheng Liao ◽  
Shengqi Zhu ◽  
Xiongpeng He ◽  
Yunpeng Li

Sign in / Sign up

Export Citation Format

Share Document