Corporate array of micromachined dipoles on silicon wafer for 60 GHz communication systems

Author(s):  
M. O. Sallam ◽  
E. A. Soliman
2010 ◽  
Vol 58 (3) ◽  
pp. 706-713 ◽  
Author(s):  
Woosung Lee ◽  
Jaeheung Kim ◽  
Choon Sik Cho ◽  
Young Joong Yoon

Author(s):  
T. Saito ◽  
N. Hidaka ◽  
Y. Ohashi ◽  
T. Shimura ◽  
Y. Aoki
Keyword(s):  

2020 ◽  
Vol 10 (13) ◽  
pp. 4546
Author(s):  
Tarek S. Mneesy ◽  
Radwa K. Hamad ◽  
Amira I. Zaki ◽  
Wael A. E. Ali

This paper presented the design and implementation of a 60 GHz single element monopole antenna as well as a two-element array made of two 60 GHz monopole antennas. The proposed antenna array was used for 5G applications with radiation characteristics that conformed to the requirements of wireless communication systems. The proposed single element was designed and optimized to work at 60 GHz with a bandwidth of 6.6 GHz (57.2–63.8 GHz) and a maximum gain of 11.6 dB. The design was optimized by double T-shaped structures that were added in the rectangular slots, as well as two external stubs in order to achieve a highly directed radiation pattern. Moreover, ring and circular slots were made in the partial ground plane at an optimized distance as a defected ground structure (DGS) to improve the impedance bandwidth in the desired band. The two-element array was fed by a feed network, thus improving both the impedance bandwidth and gain. The single element and array were fabricated, and the measured and simulated results mimicked each other in both return loss and antenna gain.


2014 ◽  
Vol 2014 ◽  
pp. 1-8 ◽  
Author(s):  
Hamsakutty Vettikalladi ◽  
Waleed Tariq Sethi ◽  
Majeed A. Alkanhal

In order to achieve wide bandwidth and high gain, we propose a stacked antenna structure having a microstrip aperture coupled feeding technique with a mounted Horn integrated on it. With optimized parameters, the single antenna element at a center frequency of 60 GHz, exhibits a wide impedance bandwidth of about 10.58% (58.9–65.25 GHz) with a gain and efficiency of 11.78 dB and 88%, respectively. For improving the gain, we designed a 2 × 2 and 4 × 4 arrays with a corporate feed network. The side lobe levels were minimized and the back radiations were reduced by making use of a reflector atλ/4distance from the corporate feed network. The2×2array structure resulted in improved gain of 15.3 dB with efficiency of 83%, while the4×4array structure provided further gain improvement of 18.07 dB with 68.3% efficiency. The proposed design is modelled in CST Microwave Studio. The results are verified using HFSS, which are found to be in good agreement.


Author(s):  
Raymond van Dijk ◽  
Lex de Boer ◽  
Alex Megej ◽  
Jeroen Hoogland ◽  
Frank E. van Vliet

Sign in / Sign up

Export Citation Format

Share Document