Transport analysis of filamentary dielectric breakdown model for metal-oxide-semiconductor tunnel structures

Author(s):  
D.Z.-Y. Ting ◽  
T.C. McGill
2015 ◽  
Vol 821-823 ◽  
pp. 177-180 ◽  
Author(s):  
Chiaki Kudou ◽  
Hirokuni Asamizu ◽  
Kentaro Tamura ◽  
Johji Nishio ◽  
Keiko Masumoto ◽  
...  

Homoepitaxial layers with different growth pit density were grown on 4H-SiC Si-face substrates by changing C/Si ratio, and the influence of the growth pit density on Schottky barrier diodes and metal-oxide-semiconductor capacitors were investigated. Even though there were many growth pits on the epi-layer, growth pit density did not affect the leakage current of Schottky barrier diodes and lifetime of constant current time dependent dielectric breakdown. By analyzing the growth pit shape, the aspect ratio of the growth pit was considered to be the key factor to the leakage current of the Schottky barrier diodes and the lifetime of metal-oxide-semiconductor capacitors.


2008 ◽  
Vol 600-603 ◽  
pp. 791-794 ◽  
Author(s):  
Takuma Suzuki ◽  
Junji Senzaki ◽  
Tetsuo Hatakeyama ◽  
Kenji Fukuda ◽  
Takashi Shinohe ◽  
...  

The channel mobility and oxide reliability of metal-oxide-semiconductor field-effect transistors (MOSFETs) on 4H-SiC (0001) carbon face were investigated. The gate oxide was fabricated by using dry-oxidized film followed by pyrogenic reoxidation annealing (ROA). Significant improvements in the oxide reliability were observed by time-dependent dielectric breakdown (TDDB) measurement. Furthermore, the field-effect inversion channel mobility (μFE) of MOSFETs fabricated by using pyrogenic ROA was as high as that of conventional 4H-SiC (0001) MOSFETs having the pyrogenic-oxidized gate oxide. It is suggested that the pyrogenic ROA of dry oxide as a method of gate oxide fabrication satisfies both channel mobility and oxide reliability on 4H-SiC (0001) carbon-face MOSFETs.


Sign in / Sign up

Export Citation Format

Share Document