The Gas Frequency Conversion Speed Regulation System Based on Fuzzy Control

Author(s):  
Chunhua Li ◽  
Xinxiang Wang ◽  
Liqin Shi
2020 ◽  
Vol 1653 ◽  
pp. 012006
Author(s):  
Hong-kui Zhang ◽  
Qiu-lin Zhang ◽  
Wang Zhe ◽  
De-peng Zhang ◽  
Ming Wang

2011 ◽  
Vol 2-3 ◽  
pp. 447-451
Author(s):  
Bin Li ◽  
Zheng Feng Cao ◽  
Jin Ping Hong

A microprocessor as the core of the digital controller has become one of the major features AC speed regulation system in modern. Based on DSP as the core of the speed control system,it can realize complex algorithm. At the same time, it can achieve the diagnosis of system’s fault, and the self-setting of parameters controlled, etc. Thus it can make the motor speed control system have higher performance. This paper introduces the motor speed control system which consists of three DSP. This system is able to adjust two Frequency conversion motor. Division of work to the DSP is according to the function of DSP. Inter-DSP makes use of dual-port RAM to exchange data and communicate. They work together to achieve and improve the performance of the control system.


2012 ◽  
Vol 490-495 ◽  
pp. 2937-2941
Author(s):  
Feng Ou ◽  
Hong Chen ◽  
Xin Xiong

In order to ensure the stably operation for centrifuge, this paper presents a new speed regulation method based on the vector control technology, and designs the control system with the inverter for the centrifuge. The paper introduces the fundamental principal of vector control, and analyses the power and torque required for the centrifuge from the result of the calculation and simulation. At last, the paper shows the result the application of the vector control technology in centrifuge. The result shows that the vector control speed regulation system is simple, reliable, and its acceleration stability is very high. The analysis can also provide a reference for similar centrifuge design personnel


2011 ◽  
Vol 354-355 ◽  
pp. 1252-1256
Author(s):  
You Tao Zhao ◽  
Yan Cheng Liu ◽  
Jun Jie Ren

With the development of AC (alternating current )technique, larger power PMSM ( permanent m- agnet synchronous motor ) has been applied in the marine electric propulsion systems. In this paper the imple- mentation of the DTC (direct torque control) systems for a variable-speed 4088kW PMSM in ship electric propulsion systems has been studied. A novel control method using SVPWM (space vector pulse width mo- dulation) was proposed and a SVPWM module was designed. Then a DTC – SVPWM simulation model of PMSM with the load of propeller was found. The simulation results shows that the variable frequency speed regulation system have good response performance in the process of the motor start or speedup and through comparing the simulation results with the experiment data of the PMSM, the validity of the model is verified.


Sign in / Sign up

Export Citation Format

Share Document