scholarly journals Computer-Aided Diagnosis in Histopathological Images of the Endometrium Using a Convolutional Neural Network and Attention Mechanisms

2020 ◽  
Vol 24 (6) ◽  
pp. 1664-1676 ◽  
Author(s):  
Hao Sun ◽  
Xianxu Zeng ◽  
Tao Xu ◽  
Gang Peng ◽  
Yutao Ma
Author(s):  
Yin Dai ◽  
Daoyun Qiu ◽  
Yang Wang ◽  
Sizhe Dong ◽  
Hong-Li Wang

Alzheimer’s disease is the third most expensive disease, only after cancer and cardiopathy. It is also the fourth leading cause of death in the elderly after cardiopathy, cancer, and cerebral palsy. The disease lacks specific diagnostic criteria. At present, there is still no definitive and effective means for preclinical diagnosis and treatment. It is the only disease that cannot be prevented and cured among the world’s top ten fatal diseases. It has now been proposed as a global issue. Computer-aided diagnosis of Alzheimer’s disease (AD) is mostly based on images at this stage. This project uses multi-modality imaging MRI/PET combining with clinical scales and uses deep learning-based computer-aided diagnosis to treat AD, improves the comprehensiveness and accuracy of diagnosis. The project uses Bayesian model and convolutional neural network to train experimental data. The experiment uses the improved existing network model, LeNet-5, to design and build a 10-layer convolutional neural network. The network uses a back-propagation algorithm based on a gradient descent strategy to achieve good diagnostic results. Through the calculation of sensitivity, specificity and accuracy, the test results were evaluated, good test results were obtained.


Biology ◽  
2021 ◽  
Vol 10 (11) ◽  
pp. 1084
Author(s):  
Yan Yan ◽  
Xu-Jing Yao ◽  
Shui-Hua Wang ◽  
Yu-Dong Zhang

Tumors are new tissues that are harmful to human health. The malignant tumor is one of the main diseases that seriously affect human health and threaten human life. For cancer treatment, early detection of pathological features is essential to reduce cancer mortality effectively. Traditional diagnostic methods include routine laboratory tests of the patient’s secretions, and serum, immune and genetic tests. At present, the commonly used clinical imaging examinations include X-ray, CT, MRI, SPECT scan, etc. With the emergence of new problems of radiation noise reduction, medical image noise reduction technology is more and more investigated by researchers. At the same time, doctors often need to rely on clinical experience and academic background knowledge in the follow-up diagnosis of lesions. However, it is challenging to promote clinical diagnosis technology. Therefore, due to the medical needs, research on medical imaging technology and computer-aided diagnosis appears. The advantages of a convolutional neural network in tumor diagnosis are increasingly obvious. The research on computer-aided diagnosis based on medical images of tumors has become a sharper focus in the industry. Neural networks have been commonly used to research intelligent methods to assist medical image diagnosis and have made significant progress. This paper introduces the traditional methods of computer-aided diagnosis of tumors. It introduces the segmentation and classification of tumor images as well as the diagnosis methods based on CNN to help doctors determine tumors. It provides a reference for developing a CNN computer-aided system based on tumor detection research in the future.


2021 ◽  
Author(s):  
Masaki Kobayashi ◽  
Junichiro Ishioka ◽  
Yoh Matsuoka ◽  
Yuichi Fukuda ◽  
Yusuke Kohno ◽  
...  

Abstract Background: Recent increased use of medical images induces further burden of their interpretation for physicians. A plain X-ray is a low-cost examination that has low-dose radiation exposure and high availability, although diagnosing urolithiasis using this method is not always easy. Since the advent of a convolutional neural network via deep learning in the 2000s, computer-aided diagnosis (CAD) has had a great impact on automatic image analysis in the urological field. The objective of our study was to develop a CAD system with deep learning architecture to detect urinary tract stones on a plain X-ray and to evaluate the model’s accuracy. Methods: We collected plain X-ray images of 1017 patients with a radio-opaque urinary tract stone. X-ray images (n=827 and 190) were used as the training and test data, respectively. We used a 17-layer Residual Network as a convolutional neural network architecture for patch-wise training. The training data were repeatedly used until the best model accuracy was achieved within 300 runs. The F score, which is a harmonic mean of the sensitivity and positive predictive value (PPV) and represents the balance of the accuracy, was measured to evaluate the model’s accuracy. Results: Using deep learning, we developed a CAD model that needed 110 ms to provide an answer for each X-ray image. The best F score was 0.752, and the sensitivity and PPV were 0.872 and 0.662, respectively. When limited to a proximal ureter stone, the sensitivity and PPV were 0.925 and 0.876, respectively, and they were the lowest at mid-ureter. Conclusion: CAD of a plain X-ray may be a promising method to detect radio-opaque urinary tract stones with satisfactory sensitivity although the PPV could still be improved. The CAD model detects urinary tract stones quickly and automatically and has the potential to become a helpful screening modality especially for primary care physicians for diagnosing urolithiasis. Further study using a higher volume of data would improve the diagnostic performance of CAD models to detect urinary tract stones on a plain X-ray.


Sign in / Sign up

Export Citation Format

Share Document