scholarly journals Dynamic Power Splitting for SWIPT With Nonlinear Energy Harvesting in Ergodic Fading Channel

2020 ◽  
Vol 7 (6) ◽  
pp. 5648-5665 ◽  
Author(s):  
Jae-Mo Kang ◽  
Chang-Jae Chun ◽  
Il-Min Kim ◽  
Dong In Kim
2018 ◽  
Vol 2018 ◽  
pp. 1-9 ◽  
Author(s):  
Tianci Wang ◽  
Guangyue Lu ◽  
Yinghui Ye ◽  
Yuan Ren

This paper investigates an energy-constrained two-way multiplicative amplify-and-forward (AF) relay network, where a practical nonlinear energy harvesting (NLEH) model is equipped at the relay to realize simultaneous wireless information and power transfer (SWIPT). We focus on the design of dynamic power splitting (DPS) strategy, in which the PS ratio is able to adjust itself according to the instantaneous channel state information (CSI). Specifically, we first formulate an optimization problem to maximize the outage throughput, subject to the NLEH. Since this formulated problem is nonconvex and difficult to solve, we further transfer it into an equivalent problem and develop a Dinkelbach iterative method to obtain the corresponding solution. Numerical results are given to verify the quick convergence of the proposed iterative method and show the superior outage throughput of the designed DPS strategy by comparing with two peer strategies designed for the linear energy harvesting (LEH) model.


Sensors ◽  
2018 ◽  
Vol 18 (10) ◽  
pp. 3294 ◽  
Author(s):  
Shidang Li ◽  
Chunguo Li ◽  
Weiqiang Tan ◽  
Baofeng Ji ◽  
Luxi Yang

Vehicle to everything (V2X) has been deemed a promising technology due to its potential to achieve traffic safety and efficiency. This paper considers a V2X downlink system with a simultaneous wireless information and power transfer (SWIPT) system where the base station not only conveys data and energy to two types of wireless vehicular receivers, such as one hybrid power-splitting vehicular receiver, and multiple energy vehicular receivers, but also prevents information from being intercepted by the potential eavesdroppers (idle energy vehicular receivers). Both the base station and the energy vehicular receivers are equipped with multiple antennas, whereas the information vehicular receiver is equipped with a single antenna. In particular, the imperfect channel state information (CSI) and the practical nonlinear energy harvesting (EH) model are taken into account. The non-convex optimization problem is formulated to maximize the minimum harvested energy power among the energy vehicular receivers satisfying the lowest harvested energy power threshold at the information vehicular receiver and secure vehicular communication requirements. In light of the intractability of the optimization problem, the semidefinite relaxation (SDR) technique and variable substitutions are applied, and the optimal solution is proven to be tight. A number of results demonstrate that the proposed robust secure beamforming scheme has better performance than other schemes.


Author(s):  
Van-Duc Phan ◽  
Phu Tran Tin ◽  
Minh Tran ◽  
Tran Thanh Trang

In this paper, we investigate the system performance in term of outage probability (OP) and intercept probability (IP) user selection protocols in full-duplex (FD) power splitting protocol (PSP) energy harvesting (EH) cooperative network over the Rayleigh fading channel. In this network, security and privacy issues are significant due to the possible eavesdropping by surrounding users. In this case, the security performance and reliable performance are represented by outage probability (OP) and intercept probability (IP), respectively. The power-splitting energy harvesting protocol is applied in our analysis. We rigorously derive the closed-form expressions of both OP and IP of the system and study the effect of various parameters. Finally, the Monte Carlo simulation results are also performed to confirm the correctness of all theoretical analysis derived.


2018 ◽  
Vol 2018 ◽  
pp. 1-14 ◽  
Author(s):  
Syed Tariq Shah ◽  
Daniel B. da Costa ◽  
Kae Won Choi ◽  
Min Young Chung

Wireless energy harvesting has emerged as an efficient solution to prolong the lifetime of wireless networks composed of energy-constrained nodes. In this paper, we consider a multipoint-to-multipoint relay network, where multiple source nodes communicate with their respective destination nodes via intermediate energy-constrained decode-and-forward (DF) relay. The performance of two different transmission modes, namely, delay tolerant and delay nontolerant, is studied. Based on power-splitting relaying protocol (PSR), optimal energy harvesting and distribution schemes for both transmission modes are provided. In addition, for more realistic and practical analysis, we consider a nonlinear energy conversion model for energy harvesting at the relay node. Our numerical results provide useful insights into different system parameters of a nonlinear energy harvesting-based multipair DF relay network.


Sensors ◽  
2020 ◽  
Vol 20 (16) ◽  
pp. 4534
Author(s):  
Thu L. N. Nguyen ◽  
Jin-Young Kim ◽  
Yoan Shin

Since radio frequency (RF) signals can be used for both information transmission and energy harvesting, RF-based energy harvesting is capable of integrating with other existing communication techniques for providing better rate–energy tradeoff and quality-of-service. Within the context of an RF-based energy harvesting relaying network, a relay node not only acts as an intermediate node to help the delivery from source to destination, but also harvests energy from an RF dedicated source to prolong its lifetime. Thus, it brings diversity gain and coverage extension as well as provides extra energy for data transmission. This paper investigates a system that enables ambient backscattering communication-assisted simultaneous wireless information and power transfer at the relay. In the proposed system, a backscatter device plays a role as a relay to meet sustainable network coverage and to harvest ambient energy as well. With a power splitting (PS) scheme, we first investigate a nonlinear energy harvesting model at the relay node. In order to adapt to the channel gains, a dynamic PS ratio is required to perform well in changing environments. Moreover, we derive mathematical expressions for the outage probability and the achievable system throughput. Numerical results show the effects of various system parameters on the outage probability and the system throughput performance.


Sign in / Sign up

Export Citation Format

Share Document