A Deep Learning-based Smart Healthcare System for Patient’s Discomfort Detection at the Edge of Internet of Things

Author(s):  
Imran Ahmed ◽  
Gwanggil Jeon ◽  
Francesco Piccialli
2021 ◽  
Vol 2021 ◽  
pp. 1-10
Author(s):  
Benzhen Guo ◽  
Yanli Ma ◽  
Jingjing Yang ◽  
Zhihui Wang

Introduction. Health monitoring and remote diagnosis can be realized through Smart Healthcare. In view of the existing problems such as simple measurement parameters of wearable devices, huge computing pressure of cloud servers, and lack of individualization of diagnosis, a novel Cloud-Internet of Things (C-IOT) framework for medical monitoring is put forward. Methods. Smart phones are adopted as gateway devices to achieve data standardization and preprocess to generate health gray-scale map uploaded to the cloud server. The cloud server realizes the business logic processing and uses the deep learning model to carry out the gray-scale map calculation of health parameters. A deep learning model based on the convolution neural network (CNN) is constructed, in which six volunteers are selected to participate in the experiment, and their health data are marked by private doctors to generate initial data set. Results. Experimental results show the feasibility of the proposed framework. The test data set is used to test the CNN model after training; the forecast accuracy is over 77.6%. Conclusion. The CNN model performs well in the recognition of health status. Collectively, this Smart Healthcare System is expected to assist doctors by improving the diagnosis of health status in clinical practice.


2021 ◽  
Vol 11 (22) ◽  
pp. 10735
Author(s):  
Mari Carmen Domingo

Smart seaside cities can fully exploit the capabilities brought by Internet of Things (IoT) and artificial intelligence to improve the efficiency of city services in traditional smart city applications: smart home, smart healthcare, smart transportation, smart surveillance, smart environment, cyber security, etc. However, smart coastal cities are characterized by their specific application domain, namely, beach monitoring. Beach attendance prediction is a beach monitoring application of particular importance for coastal managers to successfully plan beach services in terms of security, rescue, health and environmental assistance. In this paper, an experimental study that uses IoT data and deep learning to predict the number of beach visitors at Castelldefels beach (Barcelona, Spain) was developed. Images of Castelldefels beach were captured by a video monitoring system. An image recognition software was used to estimate beach attendance. A deep learning algorithm (deep neural network) to predict beach attendance was developed. The experimental results prove the feasibility of Deep Neural Networks (DNNs) for beach attendance prediction. For each beach, a classification of occupancy was estimated, depending on the number of beach visitors. The proposed model outperforms other machine learning models (decision tree, k-nearest neighbors, and random forest) and can successfully classify seven beach occupancy levels with the Mean Absolute Error (MAE), accuracy, precision, recall and F1-score of 0.03, 92.7%, 92.9%, 92.7%, and 92.7%, respectively.


Sign in / Sign up

Export Citation Format

Share Document