Shaping Quantization Noise and Clipping Distortion in Direct-Detection Discrete Multitone

2014 ◽  
Vol 32 (9) ◽  
pp. 1750-1758 ◽  
Author(s):  
William A. Ling
Author(s):  
Laura Martín González ◽  
Sjoerd van der Heide ◽  
Xuwei Xue ◽  
John van Weerdenburg ◽  
Nicola Calabretta ◽  
...  

Adaptive Sliceable-Bandwidth Variable Transceivers (S-BVTs) are key enabler for future optical networks. In particular, those based on Discrete MultiTone (DMT) modulation and Direct Detection (DD) can be considered a flexible solution suitable to address the cost efficiency requirement of optical metro networks. In this paper, we propose to use this cost-effective S-BVT option/implementation in optical metro networks adopting switching nodes based on Semiconductor Optical Amplifier (SOA) technology. Bit loading (BL) and power loading (PL) algorithms are applied to the Digital Signal Processing (DSP) modules, to maximize the performance and/or the capacity as well as enhance the flexibility and adaptability of the system. Our analysis considers switching nodes based on SOAs with and without filtering elements and fiber spans of 25 km. We present the results up to 100 km, with and without SOA-based nodes. Firstly, we analyze the adaptive BVT transmission using the Margin Adaptive (MA) BL/PL algorithm at a fixed bit rate of 28 Gb/s. The possibility of controlling the SOAs current is a key factor to face the transmission impairments due to the fiber and the filtering elements. We also analyze the system considering Rate Adaptive (RA) transmission at a fixed target BER of 3.8·10−3, showing that a maximum capacity above 34 Gb/s can be achieved for a single span of 25 km. Although the cascading of filtering elements still constitutes a limiting factor, we show that an improvement of the net bit rate performance can be obtained thanks to the combined use of S-BVT and SOA technology at the switching nodes, resulting in a promising approach for designing future optical metro networks.


2021 ◽  
Vol 2021 ◽  
pp. 1-8
Author(s):  
Sanjeev Kumar ◽  
Preeti Singh

Filter bank multicarrier (FBMC) modulation has shown sufficient potential for wireless communication. A hybrid optical FBMC technique is proposed to improve the spectral efficiency of a visible light communication (VLC) system. In this technique, a hybrid asymmetrically clipped optical offset quadrature amplitude modulation FBMC (HACO-OQAM-FBMC) modulation technique is used. Asymmetrically clipped optical FBMC (ACO-FBMC) is used for odd subcarriers, and pulse amplitude modulation-discrete multitone (PAM-DMT) is used for the even subcarriers. The proposed hybrid scheme uses an intensity modulation/direct detection (IM/DD) channel. It is shown that there is no interference on odd subcarriers using the proposed method and receiver demodulation is similar to that of ACO-FBMC receiver. However, clipping noise of ACO-FBMC falls on PAM-DMT subcarriers, which can be cancelled at receiver processing after estimation. The analytical performance of the proposed technique is compared using parameters, namely, bit error rate (BER), spectral efficiency, computational complexity, and peak to average power ratio (PAPR). It is found that HACO-OQAM-FBMC is more spectral efficient than ACO-FBMC and other OFDM-based techniques.


Photonics ◽  
2018 ◽  
Vol 5 (3) ◽  
pp. 24 ◽  
Author(s):  
Laura Martín González ◽  
Sjoerd van der Heide ◽  
Xuwei Xue ◽  
John van Weerdenburg ◽  
Nicola Calabretta ◽  
...  

Adaptive Sliceable-Bandwidth Variable Transceivers (S-BVTs) are key enablers for future optical networks. In particular, those based on Discrete MultiTone (DMT) modulation and Direct Detection (DD) can be considered a flexible solution suitable to address the cost efficiency requirement of optical metro networks. In this paper, we propose to use a cost-effective S-BVT option/implementation in optical metro networks adopting switching nodes based on Semiconductor Optical Amplifier (SOA) technology. Bit loading (BL) and power loading (PL) algorithms are applied to the Digital Signal Processing (DSP) modules, to maximize the performance and/or the capacity as well as enhance the flexibility and adaptability of the system. Our analysis considers switching nodes based on SOAs with and without filtering elements and fiber spans of 25 km. We present the results up to 100 km, with and without SOA-based nodes. Firstly, we analyze the adaptive BVT transmission using the Margin Adaptive (MA) BL/PL algorithm at a fixed bit rate of 28 Gb/s. The possibility of controlling the SOAs current is a key factor to face the transmission impairments due to the fiber and the filtering elements. We also analyze the system considering Rate Adaptive (RA) transmission at a fixed target Bit Error Rate (BER) of 3.8 × 10−3, showing that a maximum capacity above 34 Gb/s can be achieved for a single span of 25 km. Although the cascading of filtering elements still constitutes a limiting factor, we show that an improvement of the net bit rate performance can be obtained thanks to the combined use of BVT and SOA technology at the switching nodes, resulting in a promising approach for designing future optical metro networks.


2016 ◽  
Vol 34 (13) ◽  
pp. 3223-3229 ◽  
Author(s):  
Zhixin Liu ◽  
Brian Kelly ◽  
John O'Carroll ◽  
Richard Phelan ◽  
David J. Richardson ◽  
...  

1997 ◽  
Vol 161 ◽  
pp. 299-311 ◽  
Author(s):  
Jean Marie Mariotti ◽  
Alain Léger ◽  
Bertrand Mennesson ◽  
Marc Ollivier

AbstractIndirect methods of detection of exo-planets (by radial velocity, astrometry, occultations,...) have revealed recently the first cases of exo-planets, and will in the near future expand our knowledge of these systems. They will provide statistical informations on the dynamical parameters: semi-major axis, eccentricities, inclinations,... But the physical nature of these planets will remain mostly unknown. Only for the larger ones (exo-Jupiters), an estimate of the mass will be accessible. To characterize in more details Earth-like exo-planets, direct detection (i.e., direct observation of photons from the planet) is required. This is a much more challenging observational program. The exo-planets are extremely faint with respect to their star: the contrast ratio is about 10−10at visible wavelengths. Also the angular size of the apparent orbit is small, typically 0.1 second of arc. While the first point calls for observations in the infrared (where the contrast goes up to 10−7) and with a coronograph, the latter implies using an interferometer. Several space projects combining these techniques have been recently proposed. They aim at surveying a few hundreds of nearby single solar-like stars in search for Earth-like planets, and at performing a low resolution spectroscopic analysis of their infrared emission in order to reveal the presence in the atmosphere of the planet of CO H2O and O3. The latter is a good tracer of the presence of oxygen which could be, like on our Earth, released by biological activity. Although extremely ambitious, these projects could be realized using space technology either already available or in development for others missions. They could be built and launched during the first decades on the next century.


2001 ◽  
Vol 120 (5) ◽  
pp. A492-A493 ◽  
Author(s):  
E HAINDL ◽  
H BENESCH ◽  
A FINCK ◽  
V MUEHISTEIN ◽  
A LEODOLTER ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document