Mass Sensing in a Liquid Environment Using Nonlinear Self-Excited Coupled-Microcantilevers

2018 ◽  
Vol 27 (5) ◽  
pp. 774-779 ◽  
Author(s):  
Daichi Endo ◽  
Hiroshi Yabuno ◽  
Yasuyuki Yamamoto ◽  
Sohei Matsumoto
2011 ◽  
Vol 1348 ◽  
Author(s):  
Shih-Jui Chen ◽  
Anderson Lin ◽  
Lukas Baumgartel ◽  
Eun Sok Kim

ABSTRACTThis paper describes the principle of array sensing with film bulk acoustic resonators (FBARs) for combinatory mass sensing and the use of the arrayed FBAR resonant mass sensor for parallel detection of protein-ligand reactions in liquid environment. Various ligands were immobilized on the gold layer on the FBAR’s sensing surface for selective protein detection. The FBARs of the arrayed FBAR were fabricated to have different resonant frequencies from one another by adding slightly varied amount of mass loading on the resonators. Results showed that the arrayed FBAR could detect specific bindings on its surfaces as the concentration of the target ligand was varied.


Author(s):  
S. Trachtenberg ◽  
D. J. DeRosier

The bacterial cell is propelled through the liquid environment by means of one or more rotating flagella. The bacterial flagellum is composed of a basal body (rotary motor), hook (universal coupler), and filament (propellor). The filament is a rigid helical assembly of only one protein species — flagellin. The filament can adopt different morphologies and change, reversibly, its helical parameters (pitch and hand) as a function of mechanical stress and chemical changes (pH, ionic strength) in the environment.


Author(s):  
G.D. Danilatos

The advent of the environmental SEM (ESEM) has made possible the examination of uncoated and untreated specimen surfaces in the presence of a gaseous or liquid environment. However, the question arises as to what degree the examined surface remains unaffected by the action of the electron beam. It is reasonable to assume that the beam invariably affects all specimens but the type and degree of effect may be totally unimportant for one class of applications and totally unacceptable for another; yet, for a third class, it is imperative to know how our observations are modified by the presence of the beam. The aim of this report is to create an awareness of the need to initiate research work in various fields in order to determine the guiding rules of the limitations (or even advantages) due to irradiation.


2021 ◽  
pp. 103317
Author(s):  
Muidh Alheshibri ◽  
Sultan Akhtar ◽  
Abbad Al Baroot ◽  
Khaled Elsayed ◽  
Hassan S Al Qahtani ◽  
...  

Sensors ◽  
2021 ◽  
Vol 21 (10) ◽  
pp. 3337
Author(s):  
Alberto Martín-Pérez ◽  
Daniel Ramos ◽  
Javier Tamayo ◽  
Montserrat Calleja

In this work we study the different phenomena taking place when a hydrostatic pressure is applied in the inner fluid of a suspended microchannel resonator. Additionally to pressure-induced stiffness terms, we have theoretically predicted and experimentally demonstrated that the pressure also induces mass effects which depend on both the applied pressure and the fluid properties. We have used these phenomena to characterize the frequency response of the device as a function of the fluid compressibility and molecular masses of different fluids ranging from liquids to gases. The proposed device in this work can measure the mass density of an unknown liquid sample with a resolution of 0.7 µg/mL and perform gas mixtures characterization by measuring its average molecular mass with a resolution of 0.01 atomic mass units.


Sign in / Sign up

Export Citation Format

Share Document