On the Application of Lifetime-Equivalent Defect Densities on Solar Cell Level

Author(s):  
Axel Herguth
2011 ◽  
Vol 1322 ◽  
Author(s):  
Sven Burdorf ◽  
Gottfried H. Bauer ◽  
Rudolf Brüggemann

ABSTRACTIn hybrid solar cells consisting of dye sensitizers incorporated in the i-layer of a microcrystalline silicon (μc-Si:H) pin solar cell the dye sensitizer molecules are embedded in the matrix and enhance the overall absorption of the dye-matrix system due to their high absorption coefficient in the spectral range interesting for photovoltaic applications. This contribution investigates the efficiency improvement of hybrid dye-μc-Si:H solar cells compared to pure μc-Si:H solar cells by simulation. The results indicate that, under optimum conditions, the efficiency can be improved by more than a factor of 1.2 compared to a pure μc-Si:H cell. The thickness reduction for the hybrid system can be as large as 50 % for the same efficiency. However, the efficiency improvement also depends on the amount of additionally induced defects in the matrix by the embedded dye molecules. Therefore, the simulations investigate the performance of the hybrid solar cell for different absorption enhancements and defect densities.


1994 ◽  
Vol 336 ◽  
Author(s):  
Franc Smole ◽  
Marko Topič

ABSTRACTTo explain realistic circumstances with regard to energy band profiles at the TCO/a-Si:C:H heterojunction, the ASPIN computer simulation has been used. Numerical calculations indicate that the increased interface defect densities result in a steep potential drop inside the interface region, while the rest of the work function difference extends into the p-layer. The detrimental effect of a-Si:C:H partial oxidation has been simulated by additionally increased density of states at a-Si:C:H surface, and its influence on the potential barrier has been analyzed. The impact of both TCO/a-Si:C:H interface states and a-Si:C:H surface states on the photoelectric properties of p-i-n a-Si:H solar cell is discussed, and a possible improvement of Voc is envisaged.


2020 ◽  
Vol 10 (1) ◽  
Author(s):  
Mehran Minbashi ◽  
Arash Ghobadi ◽  
Elnaz Yazdani ◽  
Amirhossein Ahmadkhan Kordbacheh ◽  
Ali Hajjiah

AbstractThis study represents the investigation of earth-abundant and non-toxic CZTSSe absorber materials in kesterite solar cell by using the Finite Element Method (FEM) with (1) electrical, and (2) optical approaches. The simulated results have been validated with the experimental results to define guidelines for boosting the cell performance. For improving the cell efficiency, potential barrier variations in the front contact, and the effect of different lattice defects in the CZTSSe absorber layer have been examined. Controlling the defects and the secondary phases of absorber layer have significant influence on the cell performance improvement. Previous studies have demonstrated that, synthesis of CZTSSe:Na nanocrystals and controlling the S/(S + Se), Cu/(Zn + Sn), and Zn/Sn ratios (stoichiometry) have significant effects on the reduction of trap-assisted recombination (Shockley–Read–Hall recombination model). In this work, a screening-based approach has been employed to study the cell efficiency over a wide range of defect densities. Two categorized defect types including benign defects ($${N}_{t}<{10}^{16}$$ N t < 10 16 cm−3 , Nt defines trap density) and harmful defects $${(N}_{t}>{10}^{16}$$ ( N t > 10 16 cm−3) in the absorber bandgap in the CZTSSe solar cell, by analyzing their position changes with respect to the electron Fermi level (Efn) and the Valence Band Maximum positions have been identified. It is realized that, the harmful defects are the dominant reason for the low efficiency of the kesterite solar cells, therefore, reducing the number of harmful defects and also total defect densities lead to the power conversion efficiency record of 19.06%. This increment makes the CZTSSe solar cells as a promising candidate for industrial and commercial applications.


2020 ◽  
Vol 124 (50) ◽  
pp. 27333-27339
Author(s):  
Martin Ledinský ◽  
Aleš Vlk ◽  
Tereza Schönfeldová ◽  
Jakub Holovský ◽  
Erkan Aydin ◽  
...  

Author(s):  
E D Boyes ◽  
L Hanna

A VG HB501 FEG STEM has been modified to provide track whilst tilt [TWIT] facilities for controllably tilting selected and initially randomly aligned nanometer-sized particles into the high symmetry zone-axis orientations required for microdiffraction, lattice imaging and chemical microanalysis at the unit cell level. New electronics display in alternate TV fields and effectively in parallel on split [+VTR] or adjacent externally synchronized screens, the micro-diffraction pattern from a selected area down to <1nm2 in size, together with the bright field and high angle annular dark field [HADF] STEM images of a much wider [˜1μm] area centered on the same spot. The new system makes it possible to tilt each selected and initially randomly aligned small particle into a zone axis orientation for microdiffraction, or away from it to minimize orientation effects in chemical microanalysis. Tracking of the inevitable specimen movement with tilt is controlled by the operator, with realtime [60Hz] update of the target designation in real space and the diffraction data in reciprocal space. The spot mode micro-DP and images of the surrounding area are displayed continuously. The regular motorized goniometer stage for the HB501STEM is a top entry design but the new control facilities are almost equivalent to having a stage which is eucentric with nanometric precision about both tilt axes.


Author(s):  
P. Roitman ◽  
B. Cordts ◽  
S. Visitserngtrakul ◽  
S.J. Krause

Synthesis of a thin, buried dielectric layer to form a silicon-on-insulator (SOI) material by high dose oxygen implantation (SIMOX – Separation by IMplanted Oxygen) is becoming an important technology due to the advent of high current (200 mA) oxygen implanters. Recently, reductions in defect densities from 109 cm−2 down to 107 cm−2 or less have been reported. They were achieved with a final high temperature annealing step (1300°C – 1400°C) in conjunction with: a) high temperature implantation or; b) channeling implantation or; c) multiple cycle implantation. However, the processes and conditions for reduction and elimination of precipitates and defects during high temperature annealing are not well understood. In this work we have studied the effect of annealing temperature on defect and precipitate reduction for SIMOX samples which were processed first with high temperature, high current implantation followed by high temperature annealing.


2001 ◽  
Vol 5 (8) ◽  
pp. 609-616 ◽  
Author(s):  
Viviane Aranyos ◽  
Johan Hjelm ◽  
Anders Hagfeldt ◽  
Helena Grennberg
Keyword(s):  

1981 ◽  
Vol 42 (C4) ◽  
pp. C4-475-C4-478
Author(s):  
C. R. Wronski ◽  
Y. Goldstein ◽  
S. Kelemen ◽  
B. Abeles ◽  
H. Witzke

Sign in / Sign up

Export Citation Format

Share Document