scholarly journals Efficiency enhancement of CZTSSe solar cells via screening the absorber layer by examining of different possible defects

2020 ◽  
Vol 10 (1) ◽  
Author(s):  
Mehran Minbashi ◽  
Arash Ghobadi ◽  
Elnaz Yazdani ◽  
Amirhossein Ahmadkhan Kordbacheh ◽  
Ali Hajjiah

AbstractThis study represents the investigation of earth-abundant and non-toxic CZTSSe absorber materials in kesterite solar cell by using the Finite Element Method (FEM) with (1) electrical, and (2) optical approaches. The simulated results have been validated with the experimental results to define guidelines for boosting the cell performance. For improving the cell efficiency, potential barrier variations in the front contact, and the effect of different lattice defects in the CZTSSe absorber layer have been examined. Controlling the defects and the secondary phases of absorber layer have significant influence on the cell performance improvement. Previous studies have demonstrated that, synthesis of CZTSSe:Na nanocrystals and controlling the S/(S + Se), Cu/(Zn + Sn), and Zn/Sn ratios (stoichiometry) have significant effects on the reduction of trap-assisted recombination (Shockley–Read–Hall recombination model). In this work, a screening-based approach has been employed to study the cell efficiency over a wide range of defect densities. Two categorized defect types including benign defects ($${N}_{t}<{10}^{16}$$ N t < 10 16 cm−3 , Nt defines trap density) and harmful defects $${(N}_{t}>{10}^{16}$$ ( N t > 10 16 cm−3) in the absorber bandgap in the CZTSSe solar cell, by analyzing their position changes with respect to the electron Fermi level (Efn) and the Valence Band Maximum positions have been identified. It is realized that, the harmful defects are the dominant reason for the low efficiency of the kesterite solar cells, therefore, reducing the number of harmful defects and also total defect densities lead to the power conversion efficiency record of 19.06%. This increment makes the CZTSSe solar cells as a promising candidate for industrial and commercial applications.

2014 ◽  
Vol 2014 ◽  
pp. 1-6 ◽  
Author(s):  
Nasim Sahraei ◽  
Selvaraj Venkataraj ◽  
Premachandran Vayalakkara ◽  
Armin G. Aberle

One of the key issues of thin-film silicon solar cells is their limited optical absorptance due to the thin absorber layer and the low absorption coefficient for near-infrared wavelengths. Texturing of one or more interfaces in the layered structure of these cells is an important technique to scatter light and enhance the optical pathlength. This in turn enhances the optical absorption of the solar radiation in the absorber layer and improves the solar cell efficiency. In this paper we investigate the effects of textured glass superstrate surfaces on the optical absorptance of intrinsic a-Si:H films and a-Si:Hp-i-nthin-film solar cell precursors deposited onto them. The silicon-facing surface of the glass sheets was textured with the aluminium-induced glass texturing method (AIT method). Absorption in both intrinsic silicon films and solar cell precursor structures is found to increase strongly due to the textured glass superstrate. The increased absorption due to the AIT glass opens up the possibility to reduce the absorber layer thickness of a-Si:H solar cells.


2016 ◽  
Vol 24 (06) ◽  
pp. 1750073 ◽  
Author(s):  
I. S. AMIRI ◽  
H. AHMAD ◽  
M. M. ARIANNEJAD ◽  
M. F. ISMAIL ◽  
K. THAMBIRATNAM ◽  
...  

This work examines the performance of the Cu2SnS3 (CTS) solar cells using the solar cell capacitance simulator (SCAPS) approach. The performance of the CTS solar cell was evaluated in terms of [Formula: see text], [Formula: see text], fill factor and efficiency. The structural parameter variation of CTS solar cell has been studied in terms of buffer and absorber layer thickness, bandgap, effect of temperature on total efficiency of the solar cell. Increasing the thickness of the CdS buffer layer decreases the efficiency of the simulated solar cell. A significant increase in the efficiency of the solar cell to 20.36% was obtained with a simulated buffer layer thickness to 10[Formula: see text]nm. In terms of the CTS absorber layer thickness, the efficiency of the solar cell increases by increasing the thickness of absorber layer. By setting the thickness of CTS to 4.0[Formula: see text][Formula: see text]m, the efficiency obtained is 20.36%. It is observed that an increase in the bandgap can enhance the efficiency of the solar cell. In the performed simulation, an 0.9[Formula: see text]eV bandgap resulted in a 11.58% cell efficiency and a 1.25[Formula: see text]eV bandgap resulted in 21.96% cell efficiency. In terms of temperature, the efficiency of 20.36% was obtained at 300[Formula: see text]K, and as the temperature increases, cell efficiency will decrease.


2001 ◽  
Vol 664 ◽  
Author(s):  
Tobias Roschek ◽  
Bernd Rech ◽  
Wolfhard Beyer ◽  
Peter Werner ◽  
Felix Edelman ◽  
...  

ABSTRACTMicrocrystalline silicon (μc-Si:H) solar cells were prepared in a wide range of deposition parameters using 13.56 MHz plasma-enhanced chemical vapour deposition (PECVD). The best μc-Si:H solar cells were prepared close to the transition to amorphous silicon (a-Si:H) growth at very high deposition pressures (∼10 Torr) showing solar cell efficiencies up to 8.0 % at a deposition rate of 5ÊÅ/s. Investigations of the solar cells were performed by Raman spectroscopy and transmission electron microscopy (TEM). TEM measurements revealed similar structural properties with similar high crystalline volume fractions for these cells although they showed distinctly different efficiencies. However, an increased amorphous volume fraction was detected by Raman spectroscopy for the low efficiency cells prepared at low deposition pressures. This result is attributed to an increased ion bombardment at low pressures.


2020 ◽  
pp. 114-119

Experimental and theoretical study Porphyrin-grafted ZnO nanowire arrays were investigated for organic/inorganic hybrid solar cell applications. Two types of porphyrin – Tetra (4-carboxyphenyle) TCPP and meso-Tetraphenylporphine (Zinc-TPP)were used to modify the nanowire surfaces. The vertically aligned nanowires with porphyrin modifications were embedded in graphene-enriched poly (3-hexylthiophene) [G-P3HT] for p-n junction nanowire solar cells. Surface grafting of ZnO nanowires was found to improve the solar cell efficiency. There are different effect for the two types of porphyrin as results of Zn existing. Annealing effects on the solar cell performance were investigated by heating the devices up to 225 °C in air. It was found that the cell performance was significantly degraded after annealing. The degradation was attributed to the polymer structural change at high temperature as evidenced by electrochemical impedance spectroscopy measurements.


Energies ◽  
2021 ◽  
Vol 14 (6) ◽  
pp. 1684
Author(s):  
Alessandro Romeo ◽  
Elisa Artegiani

CdTe is a very robust and chemically stable material and for this reason its related solar cell thin film photovoltaic technology is now the only thin film technology in the first 10 top producers in the world. CdTe has an optimum band gap for the Schockley-Queisser limit and could deliver very high efficiencies as single junction device of more than 32%, with an open circuit voltage of 1 V and a short circuit current density exceeding 30 mA/cm2. CdTe solar cells were introduced at the beginning of the 70s and they have been studied and implemented particularly in the last 30 years. The strong improvement in efficiency in the last 5 years was obtained by a new redesign of the CdTe solar cell device reaching a single solar cell efficiency of 22.1% and a module efficiency of 19%. In this paper we describe the fabrication process following the history of the solar cell as it was developed in the early years up to the latest development and changes. Moreover the paper also presents future possible alternative absorbers and discusses the only apparently controversial environmental impacts of this fantastic technology.


2014 ◽  
Vol 2 (45) ◽  
pp. 19282-19289 ◽  
Author(s):  
Zhenggang Huang ◽  
Elisa Collado Fregoso ◽  
Stoichko Dimitrov ◽  
Pabitra Shakya Tuladhar ◽  
Ying Woan Soon ◽  
...  

The performance of bulk heterojunction solar cells based on a novel donor polymer DPP-TT-T was optimised by tuning molecular weight and thermal annealing.


Author(s):  
Hung-Cheng Chen ◽  
Jie-Min Lan ◽  
Hsiang-Lin Hsu ◽  
Chia-Wei Li ◽  
Tien-Shou Shieh ◽  
...  

Three different benzylammonium halide (Cl, Br, and I) salts were investigated to elucidate their effects as additives on MAPbI3 perovskite surface morphology, crystal structure, optical properties, and solar cell performance and stability.


Sign in / Sign up

Export Citation Format

Share Document