Evaluation of 12 Transposition Models Using Observations of Solar Radiation and Power Generation

2022 ◽  
Vol 12 (1) ◽  
pp. 444-452
Author(s):  
Yadong Fan ◽  
Zonglin Wang ◽  
Jianguo Wang ◽  
Li Cai ◽  
Biao Zhao ◽  
...  
2021 ◽  
Vol 45 (1) ◽  
pp. 73-83
Author(s):  
Saydul Morshed Tanvir ◽  
Xiao Wenbo ◽  
Jin Xin

Based on the power generation model of photovoltaic modules, the effects of flight speed, altitude, time and area in solar aircraft on the performance of photovoltaic modules have been studied. As the flight speed increases, the power generated by the module increases but tends to saturate. When the conversion efficiency of photovoltaic modules is improved, the required power of the solar aircraft and the power generated by the photovoltaic modules are balanced at a faster flight speed. The power generated by the modules increases with the flight altitude but tends to saturate due to the drop of air temperature and the surface temperature of the module. The higher the altitude, the smaller is the atmospheric density, and atmospheric permeability, and the greater is the solar radiation intensity, and thus the power generated by the module increases. The power generated by the components is the strongest at noon. Battery performance is the strongest in summer and the weakest in winter, as the module’s performance is mainly determined by the intensity of solar radiation. Finally, the energy distribution of solar aircraft and long-time space flight has been discussed. J. Bangladesh Acad. Sci. 45(1); 73-83: June 2021


2021 ◽  
Vol 26 (4) ◽  
pp. 113-119
Author(s):  
FRANK ONAIFO ◽  
AKPOFURE ALEXANDER OKANDEJI ◽  
OLAMIDE AJETUNMOBI ◽  
DAVID BALOGUN

This paper studies the effect of temperature, humidity and irradiance on the power generated by a photovoltaic solar cell. This was achieved using pyranometer for determining the solar radiation, wet and dry thermometer for measuring humidity, and digital multimeter for voltage and current measurement. The result of the study show that power generation increases with increase of solar irradiance. Additionally, changes of humidity level and temperature do not significantly affect solar power generation. Furthermore, it was also observed that high temperatures and higher humidity levels accelerate the corrosion process on the solar cells which reduces the efficiency of the cells.


2021 ◽  
Author(s):  
Blanka Bartok

<p>As solar energy share is showing a significant growth in the European electricity generation system, assessments regarding long-term variation of this variable related to climate change are becoming more and more relevant for this sector. Several studies analysed the impact of climate change on the solar energy sector in Europe (Jerez et al, 2015) finding light impact (-14%; +2%) in terms of mean surface solar radiation. The present study focuses on extreme values, namely on the distribution of low surface solar radiation (overcast situation) and high surface solar radiation (clear sky situation), since the frequencies of these situations have high impact on electricity generation.</p><p>The study considers 11 high-resolution (0.11 deg) bias-corrected climate projections from the EURO-CORDEX ensemble with 5 Global Climate Models (GCMs) downscaled by 6 Regional Climate Models (RCMs).</p><p>Changes in extreme surface solar radiation frequencies show different regional patterns over Europe.</p><p>The study also includes a case study determining the changes in solar power generation induced by the extreme situations.</p><p> </p><p> </p><p>Jerez et al (2015): The impact of climate change on photovoltaic power generation in Europe, Nature Communications 6(1):10014, 10.1038/ncomms10014</p><p> </p>


2019 ◽  
Vol 11 (23) ◽  
pp. 6647 ◽  
Author(s):  
Suntiti Yoomak ◽  
Theerasak Patcharoen ◽  
Atthapol Ngaopitakkul

Solar rooftop systems in the residential sector have been rapidly increased in the term of installed capacity. There are various factors, such as climate, temperature, and solar radiation, that have effects on solar power generation efficiency. This paper presents a performance assessment of a solar system installed on the rooftop of residence in different regions of Thailand by using PSIM simulation. Solar rooftop installation comparison in different regions is carried out to evaluate the suitable location. In addition, three types of solar panels are used in research: monocrystalline, polycrystalline, and thin-film. The electrical parameters of real power and energy generated from the systems are investigated and analyzed. Furthermore, the economic evaluation of different solar rooftop system sizes using the monocrystalline module is investigated by using economic indicators of discounted payback period (DPP), net present value (NPV), internal rate of return (IRR), and profitability index (PI). Results show that the central region of Thailand is a suitable place for installing solar rooftop in terms of solar radiation, and the temperature has more solar power generation capacity than the other regions. The monocrystalline and polycrystalline solar panels can generate maximum power close to each other. All solar rooftop sizes with the Feed-in Tariff (FiT) scheme give the same DPP of 6.1 years, IRR of 15%, and PI of 2.57 which are better than the cases without the FiT scheme. However, a large-scale installation of solar rooftop systems can receive more electrical energy produced from the solar rooftop systems. As a result, the larger solar rooftop system sizes can achieve better economic satisfaction.


Author(s):  
Omar Badran ◽  
Emad Abdulhadi ◽  
Rustom Mamlook

Jordan is considered one of the sun-belt countries, which possesses high solar radiation on its horizontal surface. The present study will be concerned on the uses of fuzzy sets methodology to perform evaluation between the most suitable solar technologies for power generation in Jordan, namely, solar ponds and photovoltaic (PV) technologies. The criterion of the evaluation were based on different parameters, i.e., power capacity, efficiency, availability, capacity factor, storage capability, cost, maturity, land usage and safety, they are planned as the technologies for the near foreseen term. Based on benefit to cost ratios, the results showed that photovoltaic technology found to be the better choice in terms of generating electricity, research and development and more effective programs of support and installation.


2020 ◽  
Author(s):  
Jan Wohland ◽  
Hannah Bloomfield ◽  
David Brayshaw ◽  
Stefan Pfenninger ◽  
Martin Wild

<p>The variability of renewable power generation is often quantified based on modern reanalyses such as ERA5 or MERRA-2 which provide climatic information over the last few decades. Compared to infrastructure lifetimes, modern reanalyses cover only short periods and may consequently fail to sample relevant longer-term climate variability. While there is evidence for multi-decadal variability in wind power generation [Wohland et al. (2019), Zeng et al. (2019)], hydropower [Bonnet et al. (2017)] and solar energy [Sweerts et al. (2019)], a consistent treatment of multi-decadal variability has not been achieved. </p><p>This knowledge barrier can potentially be overcome using 20th century reanalyses which provide internally consistent fields of energy-relevant variables (e.g., solar radiation, precipitation, temperature and wind). However, the provision of reliable climatic information on these timescales is known to be a challenge due to, for example, the evolution of measurement techniques. Some cases of spurious trends and other shortcomings of the datasets are known. It is therefore of utmost importance to quantify uncertainties prior to usage in energy system studies. To this end, we systematically compare 20CRv3, 20CRv2c, CERA20C and ERA20C with respect to variables needed in renewable energy assessments and report similarities and discrepancies accross the datasets. The focus is given to substantial differences with respect to multi-decadal solar radiation variability in Europe, also known as dimming and brightening. </p><p><br>References</p><p>Bonnet, R., Boé, J., Dayon, G. & Martin, E. Twentieth-Century Hydrometeorological Reconstructions to Study the Multidecadal Variations of the Water Cycle Over France. Water Resour. Res. 53, 8366–8382 (2017).</p><p>Sweerts, B. et al. Estimation of losses in solar energy production from air pollution in China since 1960 using surface radiation data. Nat Energy 4, 657–663 (2019).</p><p>Wohland, J., Omrani, N. E., Keenlyside, N. & Witthaut, D. Significant multidecadal variability in German wind energy generation. Wind Energ. Sci. 4, 515–526 (2019).</p><p>Zeng, Z. et al. A reversal in global terrestrial stilling and its implications for wind energy production. Nat. Clim. Chang. (2019).</p>


Sign in / Sign up

Export Citation Format

Share Document