A High-Sensitivity Fiber Bragg Grating Displacement Sensor Based on Transverse Property of a Tensioned Optical Fiber Configuration and Its Dynamic Performance Improvement

2017 ◽  
Vol 17 (18) ◽  
pp. 5840-5848 ◽  
Author(s):  
Tianliang Li ◽  
Yuegang Tan ◽  
Chaoyang Shi ◽  
Yongxing Guo ◽  
Zoran Najdovski ◽  
...  
2021 ◽  
Vol 32 ◽  
Author(s):  
Binh Pham Thanh ◽  
Thuy Van Nguyen ◽  
Van Hoi Pham ◽  
Huy Bui ◽  
Thi Hong Cam Hoang ◽  
...  

In this paper, we report a new type of refractometer based on a D-shaped fiber Bragg grating (FBG) integrated in a loop-mirror optical fiber laser. This proposed sensor is used in wavelength interrogation method, in which the D-shaped FBG is applied as a refractive index (RI) sensing probe and a mirror to select mode of laser. The D-shaped FBG is prepared by the removal of a portion of the fiber cladding covering the FBG by means of side-polishing technique. The D-shaped FBG sensing probe integrated in a loop-mirror optical fiber laser with saturated pump technique, the characteristics of sensing signals have been improved to obtain stable intensity, narrower bandwidth and higher optical signal-to-noise ratio compare to normal reflection configuration. The limit of detection (LOD) of this sensor can be achieved to 2.95 x 10-4 RIU in the refractive index (RI) range of 1.42-1.44. Accordingly, we believe that the proposed refractometer has a huge potential for applications in biochemical-sensing technique.


2011 ◽  
Vol 261-263 ◽  
pp. 1341-1347
Author(s):  
Hong Zhang ◽  
You Ping Liu ◽  
Jian Hua Li ◽  
Mao Dong Xiong

The fiber Bragg grating (FBG) technology is studied based on the current monitoring status of the highway soft ground settlement, for instance, the low degree of automation, the unsatisfied accuracy of the device, the slow data transmission and the greater measurement errors. The limited measuring range and the difficult situations of the soft ground burying and installing of the fiber optic sensor still need to be addressed. This thesis has analyzed the development of the long range optical fiber displacement sensor as well as its burying techniques which are suitable for soft ground settlement monitoring. Both of them have been successfully applied to De Chang Highway D10 subject. The study also shows that the long range optical fiber displacement sensor is able to meet the requirements of the soft ground monitoring. And data can be accurately monitored by means of real-time or on-line continuously. This is of great significance in pushing forward the development of the fiber optical monitoring technology in the field.


2020 ◽  
Vol 12 (1) ◽  
pp. 4
Author(s):  
Yuqing Li ◽  
Kuo Li ◽  
Guoyong Liu ◽  
Juan Tian ◽  
Yanchun Wang

Fiber Bragg grating (FBG) accelerometers using transverse forces have higher sensitivity but lower resonant frequency than ones using axial forces. By shortening the distance between the two fixed ends of the FBG, the resonant frequency can be improved without lowing the sensitivity. Here, a compact FBG accelerometer using transverse forces with a slightly pre-relaxed FBG and 25mm distance between the two fixed ends has been demonstrated with the crest-to-trough sensitivity 1.1nm/g at 5Hz and the resonant frequency 42Hz. It reveals that making the FBG slightly pre-relaxed rather than pre-stretched also improves the tradeoff between the sensitivity and resonant frequency. Full Text: PDF References:Kawasaki, B. S. , Hill, K. O , Johnson, D. C. , & Fujii, Y. , "Narrow-band Bragg reflectors in optical fibers", Optics Letters 3, 66 (1978) [CrossRef]K. O. Hill, and G. Meltz, "Fiber Bragg grating technology fundamentals and overview", Journal of Lightwave Technology 15, 1263 (1997) [CrossRef]B. Lee, "Review of the present status of optical fiber sensors", Optical Fiber Technology, 9, 57-79 (2003) [CrossRef]Laudati, A. , Mennella, F. , Giordano, M. , D"Altrui, G. , Tassini, C. C. , & Cusano, A., "A Fiber-Optic Bragg Grating Seismic Sensor", IEEE Photonics Technology Letters, 19, 1991 (2007) [CrossRef]P. F. Costa Antunes, C. A. Marques, H. Varum, and P. S. Andre, "Biaxial Optical Accelerometer and High-Angle Inclinometer With Temperature and Cross-Axis Insensitivity", IEEE Sens. J. 12, 2399 (2012) [CrossRef]Guo, Y. , Zhang, D. , Zhou, Z. , Xiong, L. , & Deng, X., "Welding-packaged accelerometer based on metal-coated FBG", Chinese Optics Letters, 11, 21 (2013). [CrossRef]Zhang, Y. , Zhang, W. , Zhang, Y. , Chen, L. , Yan, T. , & Wang, S. , et al., "2-D Medium–High Frequency Fiber Bragg Gratings Accelerometer", IEEE Sensors Journal, 17, 614(2017) [CrossRef]Xiu-bin Zhu, "A novel FBG velocimeter with wind speed and temperature synchronous measurement", Optoelectronics Letters, 14, 276-279 (2018) [CrossRef]Li, K. , Yau, M. H. , Chan, T. H. T. , Thambiratnam, D., "Fiber Bragg grating strain modulation based on nonlinear string transverse-force amplifier", & Tam, H. Y. , Optics Letters, 38, 311 (2013) [CrossRef]Li, K. , Chan, T. H. T. , Yau, M. H. , Nguyen, T. , Thambiratnam, D. P. , & Tam, H. Y., "Very sensitive fiber Bragg grating accelerometer using transverse forces with an easy over-range protection and low cross axial sensitivity", Applied Optics, 52, 6401 (2013) [CrossRef]Li, K. , Chan, T. H. T. , Yau, M. H. , Thambiratnam, D. P. , & Tam, H. Y., "Biaxial Fiber Bragg Grating Accelerometer Using Axial and Transverse Forces", IEEE Photonics Technology Letters, 26, 1549 (2014). [CrossRef]Li, K. , Chan, T. H. , Yau, M. H. , Thambiratnam, D. P. , & Tam, H. Y., "Experimental verification of the modified spring-mass theory of fiber Bragg grating accelerometers using transverse forces", Applied Optics, 53, 1200-1211(2014) [CrossRef]


2012 ◽  
Vol 24 (9) ◽  
pp. 763-765 ◽  
Author(s):  
Alessio Stefani ◽  
Søren Andresen ◽  
Wu Yuan ◽  
Nicolai Herholdt-Rasmussen ◽  
Ole Bang

2019 ◽  
Vol 19 (3) ◽  
pp. 1403-1409 ◽  
Author(s):  
Sungwook Choi ◽  
Seul-Lee Lee ◽  
Jihoon Kim ◽  
Sun Jae Jeong ◽  
Min Seok Kim ◽  
...  

2012 ◽  
Vol 8 (10) ◽  
pp. 310797 ◽  
Author(s):  
Xuefeng Zhao ◽  
Jie Lu ◽  
Ruicong Han ◽  
Xianglong Kong ◽  
Yanhong Wang ◽  
...  

The paper reports the application of the distributed optical fiber sensing technology and the FBG sensing technology in bridge strain monitoring; the overall changeable characteristics of the whole structure can be obtained through the distributed optical fiber sensing technology (BOTDA), meanwhile the accurate information of local important parts of the structure can be obtained through the optical fiber Bragg grating sensor (FBG), which can improve the accuracy of the monitoring. FBG sensor has a high sensitivity, but it can only realize the measurement of local discrete points for the quasidistributed sensing. BOTDA can realize the long distance and distributed measurement, but its spatial resolution is not high. FBG and BOTDA were applied together in bridge monitoring in this test, taking full advantage of the distributed BOTDA on the overall strain measurements of the structure, as well as monitoring the key parts by the arrangement of FBG. The combined application of BOTDA and FBG can achieve the overall monitoring from point to line and then to the surface and, therefore, obtain more comprehensive information on the strain of the test structure.


Sign in / Sign up

Export Citation Format

Share Document