Detection Probability Calculation Model of Visible and Infrared Fusion Method in Composite Photoelectric Detection Target

2019 ◽  
Vol 19 (9) ◽  
pp. 3296-3303
Author(s):  
Hanshan Li ◽  
Xiaoqian Zhang ◽  
Junchai Gao
Sensor Review ◽  
2017 ◽  
Vol 37 (1) ◽  
pp. 26-32
Author(s):  
Hanshan Li

Purpose The purpose of this paper is to evaluate the detection performance of infrared photoelectric detection system and establish stable tracking platform. Design/methodology/approach This paper puts forward making use of the finite element analysis method to set up the infrared radiation characteristics calculation model of flying target in infrared photoelectric detection system; researches the target optical characteristics based on the target imaging detection theory; sets up the heat balance equation of target’s surface node and gives the calculation method of total radiation intensity of flying target; and deduces the target detection distance calculation function; studies the changed regulation of radiation energy that charge coupled device (CCD) gain comes from target surface infrared heat radiations under different sky background luminance and different target flight attitude. Findings Through calculation and experiment analysis, the results show that when the target’s surface area increases or the target flight velocity is higher, the radiation energy that CCD obtained is higher, which is advantageous to the target stable detection in infrared photoelectric detection system. Originality/value This paper uses the finite element analysis method to set up the infrared radiation characteristics calculation model of flying target and give the calculation and experiment results; those results can provide some data and improve the design method of infrared photoelectric detection system, and it is of value.


2021 ◽  
Vol ahead-of-print (ahead-of-print) ◽  
Author(s):  
Z.G. Liang ◽  
J.L. Chen ◽  
Z.W. Zhang ◽  
S.C. Zhao ◽  
S.S. Wang

PurposeIn order to explore the damaging effect of behind-armor debris of explosively formed projectile (EFP) attack on the top armor of tank and the internal parts of vehicles, a method of damage probability calculation based on experiments is proposed.Design/methodology/approachThe equivalent target structure of rear-effect damage of the equipment and personnel in the vehicle is determined based on the analysis of the vulnerability of internal equipment and personnel in the tank. The experimental scheme to obtain the density distribution of behind-armor debris is designed, and the calculation model of the damage probability of cavitating antipersonnel debris to the key components of the vehicle is given in the range of scattering angles and different broken pieces.FindingsThe examples show that the damage probability calculation model can be used in the process of evaluating the damage of the equipment and personnel in the tank by behind-armor debris.Originality/valueAn experimental model based on the analysis of the vulnerability of the equipment and personnel is proposed to calculate the damage probability from debris falling on the equipment and personnel in the vehicle. The results are of great value to the calculation of damage evaluation of the equipment and personnel in the tank.


2013 ◽  
Vol 401-403 ◽  
pp. 2170-2174 ◽  
Author(s):  
Ya Ping Yang ◽  
Yong Mei Hao ◽  
Zhi Xiang Xing

A Bayesian network quantitative calculation model for urban natural gas pipelines was established by using the unique logic of a Bayesian network in handling complicated risk systems. By using a natural gas pipeline as an example, failure situations such as single factor polymorphism, double factor polymorphism, and multi-factor polymorphism of a pipeline were quantitatively calculated to obtain the probability of top events and the structural importance of basic factors. The proposed method not only reflects clearly the effects of different factors but also predicts the failure state of urban natural gas pipelines comprehensively and accurately. The results of the proposed method can serve as a significant reference for the risk management and fault processing of city natural gas pipelines.


Sign in / Sign up

Export Citation Format

Share Document