Image-Based Ultrasound Speed Estimation in Isotropic Materials

2020 ◽  
Vol 20 (21) ◽  
pp. 12903-12913
Author(s):  
Hector Lise de Moura ◽  
Vitor de Oliveira Silva ◽  
Giovanni Alfredo Guarneri ◽  
Marco Tulio Lopes Guerreiro ◽  
Thiago Alberto Rigo Passarin ◽  
...  
2008 ◽  
Vol 128 (2) ◽  
pp. 125-130
Author(s):  
Kan Akatsu ◽  
Nobuhiro Mitomo ◽  
Shinji Wakui

Sensors ◽  
2021 ◽  
Vol 21 (3) ◽  
pp. 798
Author(s):  
Hamed Darbandi ◽  
Filipe Serra Bragança ◽  
Berend Jan van der Zwaag ◽  
John Voskamp ◽  
Annik Imogen Gmel ◽  
...  

Speed is an essential parameter in biomechanical analysis and general locomotion research. It is possible to estimate the speed using global positioning systems (GPS) or inertial measurement units (IMUs). However, GPS requires a consistent signal connection to satellites, and errors accumulate during IMU signals integration. In an attempt to overcome these issues, we have investigated the possibility of estimating the horse speed by developing machine learning (ML) models using the signals from seven body-mounted IMUs. Since motion patterns extracted from IMU signals are different between breeds and gaits, we trained the models based on data from 40 Icelandic and Franches-Montagnes horses during walk, trot, tölt, pace, and canter. In addition, we studied the estimation accuracy between IMU locations on the body (sacrum, withers, head, and limbs). The models were evaluated per gait and were compared between ML algorithms and IMU location. The model yielded the highest estimation accuracy of speed (RMSE = 0.25 m/s) within equine and most of human speed estimation literature. In conclusion, highly accurate horse speed estimation models, independent of IMU(s) location on-body and gait, were developed using ML.


2021 ◽  
pp. 108128652110015
Author(s):  
YL Qu ◽  
GY Zhang ◽  
YM Fan ◽  
F Jin

A new non-classical theory of elastic dielectrics is developed using the couple stress and electric field gradient theories that incorporates the couple stress, quadrupole and curvature-based flexoelectric effects. The couple stress theory and an extended Gauss’s law for elastic dielectrics with quadrupole polarization are applied to derive the constitutive relations of this new theory through energy conservation. The governing equations and the complete boundary conditions are simultaneously obtained through a variational formulation based on the Gibbs-type variational principle. The constitutive relations of general anisotropic and isotropic materials with the corresponding independent material constants are also provided, respectively. To illustrate the newly proposed theory and to show the flexoelectric effect in isotropic materials, one pure bending problem of a simply supported beam is analytically solved by directly applying the formulas derived. The analytical results reveal that the flexoelectric effect is present in isotropic materials. In addition, the incorporation of both the couple stress and flexoelectric effects always leads to increased values of the beam bending stiffness.


Sign in / Sign up

Export Citation Format

Share Document