Energy-efficient barrier coverage based on nodes alliance for intrusion detection in Underwater Sensor Networks

2022 ◽  
pp. 1-1
Author(s):  
Juan Chang ◽  
Xiaohong Shen ◽  
Weigang Bai ◽  
Xiangxiang Li
Sensors ◽  
2021 ◽  
Vol 21 (13) ◽  
pp. 4368
Author(s):  
Jitander Kumar Pabani ◽  
Miguel-Ángel Luque-Nieto ◽  
Waheeduddin Hyder ◽  
Pablo Otero

Underwater Wireless Sensor Networks (UWSNs) are subjected to a multitude of real-life challenges. Maintaining adequate power consumption is one of the critical ones, for obvious reasons. This includes proper energy consumption due to nodes close to and far from the sink node (gateway), which affect the overall energy efficiency of the system. These wireless sensors gather and route the data to the onshore base station through the gateway at the sea surface. However, finding an optimum and efficient path from the source node to the gateway is a challenging task. The common reasons for the loss of energy in existing routing protocols for underwater are (1) a node shut down due to battery drainage, (2) packet loss or packet collision which causes re-transmission and hence affects the performance of the system, and (3) inappropriate selection of sensor node for forwarding data. To address these issues, an energy efficient packet forwarding scheme using fuzzy logic is proposed in this work. The proposed protocol uses three metrics: number of hops to reach the gateway node, number of neighbors (in the transmission range of a node) and the distance (or its equivalent received signal strength indicator, RSSI) in a 3D UWSN architecture. In addition, the performance of the system is also tested with adaptive and non-adaptive transmission ranges and scalable number of nodes to see the impact on energy consumption and number of hops. Simulation results show that the proposed protocol performs better than other existing techniques or in terms of parameters used in this scheme.


2019 ◽  
Vol 68 (2) ◽  
pp. 1487-1500 ◽  
Author(s):  
Yali Yuan ◽  
Chencheng Liang ◽  
Megumi Kaneko ◽  
Xu Chen ◽  
Dieter Hogrefe

Sensors ◽  
2019 ◽  
Vol 19 (11) ◽  
pp. 2546 ◽  
Author(s):  
Juan Chang ◽  
Xiaohong Shen ◽  
Weigang Bai ◽  
Ruiqin Zhao ◽  
Bin Zhang

Underwater sensor networks ( UWSNs ) based barrier coverage is increasingly important for intrusion detection due to the scarcity of underwater sensor resource. To improve UWSNs’ detection performance and prolong their lifetime, an efficient barrier coverage strategy is very important. In this paper, a novel concept: hierarchy graph is proposed. Hierarchy graph can make the network’s topology more clarity. In accordance with the hierarchy graph, 1-barrier coverage algorithm and k-barrier coverage algorithm are presented to construct the barrier with less sensors for higher energy efficiency. Both analytical and simulation studies demonstrate that the proposed algorithms can provide high detection probability and long lifetime for UWSNs.


2012 ◽  
Vol 23 (11) ◽  
pp. 2107-2116 ◽  
Author(s):  
Junfeng Xu ◽  
Keqiu Li ◽  
Geyong Min ◽  
Kai Lin ◽  
Wenyu Qu

Sign in / Sign up

Export Citation Format

Share Document