Characterization of the Spatial Variability of In-Situ Soil Moisture Measurements for Upscaling at the Spatial Resolution of RADARSAT-2

Author(s):  
Imen Gherboudj ◽  
Ramata Magagi ◽  
Aaron A. Berg ◽  
Brenda Toth
2018 ◽  
Author(s):  
Devon Jakob ◽  
Le Wang ◽  
Haomin Wang ◽  
Xiaoji Xu

<p>In situ measurements of the chemical compositions and mechanical properties of kerogen help understand the formation, transformation, and utilization of organic matter in the oil shale at the nanoscale. However, the optical diffraction limit prevents attainment of nanoscale resolution using conventional spectroscopy and microscopy. Here, we utilize peak force infrared (PFIR) microscopy for multimodal characterization of kerogen in oil shale. The PFIR provides correlative infrared imaging, mechanical mapping, and broadband infrared spectroscopy capability with 6 nm spatial resolution. We observed nanoscale heterogeneity in the chemical composition, aromaticity, and maturity of the kerogens from oil shales from Eagle Ford shale play in Texas. The kerogen aromaticity positively correlates with the local mechanical moduli of the surrounding inorganic matrix, manifesting the Le Chatelier’s principle. In situ spectro-mechanical characterization of oil shale will yield valuable insight for geochemical and geomechanical modeling on the origin and transformation of kerogen in the oil shale.</p>


2004 ◽  
Vol 18 (1) ◽  
pp. 41-52 ◽  
Author(s):  
Richard M. Petrone ◽  
J. S. Price ◽  
S. K. Carey ◽  
J. M. Waddington

2018 ◽  
Vol 22 (10) ◽  
pp. 5341-5356 ◽  
Author(s):  
Seyed Hamed Alemohammad ◽  
Jana Kolassa ◽  
Catherine Prigent ◽  
Filipe Aires ◽  
Pierre Gentine

Abstract. Characterizing soil moisture at spatiotemporal scales relevant to land surface processes (i.e., of the order of 1 km) is necessary in order to quantify its role in regional feedbacks between the land surface and the atmospheric boundary layer. Moreover, several applications such as agricultural management can benefit from soil moisture information at fine spatial scales. Soil moisture estimates from current satellite missions have a reasonably good temporal revisit over the globe (2–3-day repeat time); however, their finest spatial resolution is 9 km. NASA's Soil Moisture Active Passive (SMAP) satellite has estimated soil moisture at two different spatial scales of 36 and 9 km since April 2015. In this study, we develop a neural-network-based downscaling algorithm using SMAP observations and disaggregate soil moisture to 2.25 km spatial resolution. Our approach uses the mean monthly Normalized Differenced Vegetation Index (NDVI) as ancillary data to quantify the subpixel heterogeneity of soil moisture. Evaluation of the downscaled soil moisture estimates against in situ observations shows that their accuracy is better than or equal to the SMAP 9 km soil moisture estimates.


2013 ◽  
Vol 17 (3) ◽  
pp. 1177-1188 ◽  
Author(s):  
B. Li ◽  
M. Rodell

Abstract. Past studies on soil moisture spatial variability have been mainly conducted at catchment scales where soil moisture is often sampled over a short time period; as a result, the observed soil moisture often exhibited smaller dynamic ranges, which prevented the complete revelation of soil moisture spatial variability as a function of mean soil moisture. In this study, spatial statistics (mean, spatial variability and skewness) of in situ soil moisture, modeled and satellite-retrieved soil moisture obtained in a warm season (198 days) were examined over three large climate regions in the US. The study found that spatial moments of in situ measurements strongly depend on climates, with distinct mean, spatial variability and skewness observed in each climate zone. In addition, an upward convex shape, which was revealed in several smaller scale studies, was observed for the relationship between spatial variability of in situ soil moisture and its spatial mean when statistics from dry, intermediate, and wet climates were combined. This upward convex shape was vaguely or partially observable in modeled and satellite-retrieved soil moisture estimates due to their smaller dynamic ranges. Despite different environmental controls on large-scale soil moisture spatial variability, the correlation between spatial variability and mean soil moisture remained similar to that observed at small scales, which is attributed to the boundedness of soil moisture. From the smaller support (effective area or volume represented by a measurement or estimate) to larger ones, soil moisture spatial variability decreased in each climate region. The scale dependency of spatial variability all followed the power law, but data with large supports showed stronger scale dependency than those with smaller supports. The scale dependency of soil moisture variability also varied with climates, which may be linked to the scale dependency of precipitation spatial variability. Influences of environmental controls on soil moisture spatial variability at large scales are discussed. The results of this study should be useful for diagnosing large scale soil moisture estimates and for improving the estimation of land surface processes.


2012 ◽  
Vol 9 (9) ◽  
pp. 10245-10276 ◽  
Author(s):  
B. Li ◽  
M. Rodell

Abstract. Past studies on soil moisture spatial variability have been mainly conducted in catchment scales where soil moisture is often sampled over a short time period. Because of limited climate and weather conditions, the observed soil moisture often exhibited smaller dynamic ranges which prevented the complete revelation of soil moisture spatial variability as a function of mean soil moisture. In this study, spatial statistics (mean, spatial variability and skewness) of in situ soil moisture measurements (from a continuously monitored network across the US), modeled and satellite retrieved soil moisture obtained in a warm season (198 days) were examined at large extent scales (>100 km) over three different climate regions. The investigation on in situ measurements revealed that their spatial moments strongly depend on climates, with distinct mean, spatial variability and skewness observed in each climate zone. In addition, an upward convex shape, which was revealed in several smaller scale studies, was observed for the relationship between spatial variability of in situ soil moisture and its spatial mean across dry, intermediate, and wet climates. These climate specific features were vaguely or partially observable in modeled and satellite retrieved soil moisture estimates, which is attributed to the fact that these two data sets do not have climate specific and seasonal sensitive mean soil moisture values, in addition to lack of dynamic ranges. From the point measurements to satellite retrievals, soil moisture spatial variability decreased in each climate region. The three data sources all followed the power law in the scale dependency of spatial variability, with coarser resolution data showing stronger scale dependency than finer ones. The main findings from this study are: (1) the statistical distribution of soil moisture depends on spatial mean soil moisture values and thus need to be derived locally within any given area; (2) the boundedness of soil moisture plays a pivoting role in the dependency of soil moisture spatial variability/skewness on its mean (and thus climate conditions); (3) the scale dependency of soil moisture spatial variability changes with climate conditions.


Soil Research ◽  
1996 ◽  
Vol 34 (5) ◽  
pp. 755 ◽  
Author(s):  
J Sierra

In situ, incubations of intact soil cores were carried out to identify factors controlling nitrogen (N) mineralisation and its spatial variability under field conditions. The analysed factors were soil moisture, temperature, and the content of light-fraction (density ≤ 2 Mg/m3) organic carbon (LC) contained in the soil. The error associated with the estimate of in situ N mineralisation was analysed using undisturbed samples in laboratory incubations. The coefficient of variation of in situ N mineralisation ranged from 58 to 234%. Nitrogen and LC mineralisation in the field showed a similar temporal pattern. The major factor affecting this pattern was soil temperature, soil moisture being near the optimum level throughout the experiment. The rate of N mineralisation during an incubation period was correlated with the content of LC at the beginning of the period; this factor explained 40–50% of the variation in N mineralisation. At a low rate of N mineralisation, a large proportion of the spatial variability was attributed to the error of estimation. From the relationship between N mineralisation and LC content, we estimated the rate constant k which could be expressed as a function of soil temperature. Within the observed temperature range (daily mean average 11–17°C), the Q10 (temperature coefficient) of in situ N mineralisation was 1.5. Negative values of N mineralisation were associated with the lower LC content of each period, indicating the presence of an immobilisation process, or that a proportion of LC was not involved in N mineralisation.


2019 ◽  
Vol 25 (S1) ◽  
pp. 17-18
Author(s):  
Jacob R. Jokisaari ◽  
Jordan Hachtel ◽  
Xuan Hu ◽  
Arijita Mukherjee ◽  
Canhui Wang ◽  
...  

2020 ◽  
Author(s):  
Sarah Schönbrodt-Stitt ◽  
Paolo Nasta ◽  
Nima Ahmadian ◽  
Markus Kurtenbach ◽  
Christopher Conrad ◽  
...  

&lt;p&gt;Mapping near-surface soil moisture (&lt;em&gt;&amp;#952;&lt;/em&gt;) is of tremendous relevance for a broad range of environment-related disciplines and meteorological, ecological, hydrological and agricultural applications. Globally available products offer the opportunity to address &lt;em&gt;&amp;#952;&lt;/em&gt; in large-scale modelling with coarse spatial resolution such as at the landscape level. However, &lt;em&gt;&amp;#952;&lt;/em&gt; estimation at higher spatial resolution is of vital importance for many small-scale applications. Therefore, we focus our study on a small-scale catchment (MFC2) belonging to the &amp;#8220;Alento&amp;#8221; hydrological observatory, located in southern Italy (Campania Region). The goal of this study is to develop new machine-learning approaches to estimate high grid-resolution (about 17 m cell size) &lt;em&gt;&amp;#952;&lt;/em&gt; maps from mainly backscatter measurements retrieved from C-band Synthetic Aperture Radar (SAR) based on Sentinel-1 (S1) images and from gridded terrain attributes. Thus, a workflow comprising a total of 48 SAR-based &lt;em&gt;&amp;#952;&lt;/em&gt; patterns estimated for 24 satellite overpass dates (revisit time of 6 days) each with ascendant and descendent orbits will be presented. To enable for the mapping, SAR-based &lt;em&gt;&amp;#952;&lt;/em&gt; data was calibrated with in-situ measurements carried out with a portable device during eight measurement campaigns at time of satellite overpasses (four overpass days in total with each ascendant and descendent satellite overpasses per day in November 2018). After the calibration procedure, data validation was executed from November 10, 2018 till March 28, 2019 by using two stationary sensors monitoring &lt;em&gt;&amp;#952;&lt;/em&gt; at high-temporal (1-min recording time). The specific sensor locations reflected two contrasting field conditions, one bare soil plot (frequently kept clear, without disturbance of vegetation cover) and one non-bare soil plot (real-world condition). Point-scale ground observations of &lt;em&gt;&amp;#952;&lt;/em&gt; were compared to pixel-scale (17 m &amp;#215; 17 m), SAR-based &lt;em&gt;&amp;#952;&lt;/em&gt; estimated for those pixels corresponding to the specific positions of the stationary sensors. Mapping performance was estimated through the root mean squared error (RMSE). For a short-term time series of &lt;em&gt;&amp;#952;&lt;/em&gt; (Nov 2018) integrating 136 in situ, sensor-based &lt;em&gt;&amp;#952;&lt;/em&gt; (&lt;em&gt;&amp;#952;&lt;/em&gt;&lt;sub&gt;insitu&lt;/sub&gt;) and 74 gravimetric-based &lt;em&gt;&amp;#952;&lt;/em&gt; (&lt;em&gt;&amp;#952;&lt;/em&gt;&lt;sub&gt;gravimetric&lt;/sub&gt;) measurements during a total of eight S1 overpasses, mapping performance already proved to be satisfactory with RMSE=0.039 m&amp;#179;m&lt;sup&gt;-&lt;/sup&gt;&amp;#179; and R&amp;#178;=0.92, respectively with RMSE=0.041 m&amp;#179;m&lt;sup&gt;-&lt;/sup&gt;&amp;#179; and R&amp;#178;=0.91. First results further reveal that estimated satellite-based &lt;em&gt;&amp;#952;&lt;/em&gt; patterns respond to the evolution of rainfall. With our workflow developed and results, we intend to contribute to improved environmental risk assessment by assimilating the results into hydrological models (e.g., HydroGeoSphere), and to support future studies on combined ground-based and SAR-based &lt;em&gt;&amp;#952;&lt;/em&gt; retrieval for forested land (future missions operating at larger wavelengths e.g. NISARL-band, Biomass P-band sensors).&lt;/p&gt;


2020 ◽  
Author(s):  
Luca Zappa ◽  
Matthias Forkel ◽  
Angelika Xaver ◽  
Wouter Dorigo

&lt;p&gt;Remotely sensed data from microwave sensors have been successfully used to retrieve soil moisture on a global scale. In particular, passive and active microwave sensors with large footprints can observe the same location with a (sub-)daily frequency, but typically are characterized by spatial resolutions in the order of tens of km. Therefore, such coarse scale products can accurately capture the temporal dynamics of soil moisture but are inadequate in providing spatial details. However, several agricultural and hydrological applications could greatly benefit from soil moisture observations with a sub-kilometer spatial resolution while preserving a daily revisit time.&lt;/p&gt;&lt;p&gt;Here, we present a framework for downscaling coarse resolution satellite soil moisture products (ASCAT and SMAP) to high spatial resolution. In particular, we build robust relationships between remotely sensed soil moisture and ancillary variables on soil texture, topography, and vegetation cover. Such relationship is built through Random Forest regressions, trained against in-situ measurements of soil moisture. The proposed approach is developed and tested in an agricultural catchment equipped with a high-density network of in-situ sensors. Our results show a strong consistency between the downscaled and the observed spatio-temporal patterns of soil moisture. Furthermore, including a proxy of vegetation cover in the Random Forest regressions results in considerable improvements of the downscaling performance. Finally, if only limited training data can be used, priority should be given to increase the number of sensor locations to adequately cover the spatial heterogeneity, rather than expanding the duration of the measurements.&amp;#160;&lt;/p&gt;&lt;p&gt;Future research will focus on including additional ancillary variables as model predictors, e.g. Land Surface Temperature or backscatter, and on applying the downscaling framework to other regions with similar environmental and climatic conditions.&lt;/p&gt;


Sign in / Sign up

Export Citation Format

Share Document