scholarly journals Research on a Single-Tree Point Cloud Segmentation Method Based on UAV Tilt Photography and Deep Learning Algorithm

Author(s):  
Xiaoyu Hu ◽  
Dan Li
Horticulturae ◽  
2021 ◽  
Vol 8 (1) ◽  
pp. 21
Author(s):  
Jizhang Wang ◽  
Zhiheng Gao ◽  
Yun Zhang ◽  
Jing Zhou ◽  
Jianzhi Wu ◽  
...  

In order to realize the real-time and accurate detection of potted flowers on benches, in this paper we propose a method based on the ZED 2 stereo camera and the YOLO V4-Tiny deep learning algorithm for potted flower detection and location. First, an automatic detection model of flowers was established based on the YOLO V4-Tiny convolutional neural network (CNN) model, and the center points on the pixel plane of the flowers were obtained according to the prediction box. Then, the real-time 3D point cloud information obtained by the ZED 2 camera was used to calculate the actual position of the flowers. The test results showed that the mean average precision (MAP) and recall rate of the training model was 89.72% and 80%, respectively, and the real-time average detection frame rate of the model deployed under Jetson TX2 was 16 FPS. The results of the occlusion experiment showed that when the canopy overlap ratio between the two flowers is more than 10%, the recognition accuracy will be affected. The mean absolute error of the flower center location based on 3D point cloud information of the ZED 2 camera was 18.1 mm, and the maximum locating error of the flower center was 25.8 mm under different light radiation conditions. The method in this paper establishes the relationship between the detection target of flowers and the actual spatial location, which has reference significance for the machinery and automatic management of potted flowers on benches.


GigaScience ◽  
2021 ◽  
Vol 10 (5) ◽  
Author(s):  
Teng Miao ◽  
Weiliang Wen ◽  
Yinglun Li ◽  
Sheng Wu ◽  
Chao Zhu ◽  
...  

Abstract Background The 3D point cloud is the most direct and effective data form for studying plant structure and morphology. In point cloud studies, the point cloud segmentation of individual plants to organs directly determines the accuracy of organ-level phenotype estimation and the reliability of the 3D plant reconstruction. However, highly accurate, automatic, and robust point cloud segmentation approaches for plants are unavailable. Thus, the high-throughput segmentation of many shoots is challenging. Although deep learning can feasibly solve this issue, software tools for 3D point cloud annotation to construct the training dataset are lacking. Results We propose a top-to-down point cloud segmentation algorithm using optimal transportation distance for maize shoots. We apply our point cloud annotation toolkit for maize shoots, Label3DMaize, to achieve semi-automatic point cloud segmentation and annotation of maize shoots at different growth stages, through a series of operations, including stem segmentation, coarse segmentation, fine segmentation, and sample-based segmentation. The toolkit takes ∼4–10 minutes to segment a maize shoot and consumes 10–20% of the total time if only coarse segmentation is required. Fine segmentation is more detailed than coarse segmentation, especially at the organ connection regions. The accuracy of coarse segmentation can reach 97.2% that of fine segmentation. Conclusion Label3DMaize integrates point cloud segmentation algorithms and manual interactive operations, realizing semi-automatic point cloud segmentation of maize shoots at different growth stages. The toolkit provides a practical data annotation tool for further online segmentation research based on deep learning and is expected to promote automatic point cloud processing of various plants.


2021 ◽  
Vol 13 (9) ◽  
pp. 1779
Author(s):  
Xiaoyan Yin ◽  
Zhiqun Hu ◽  
Jiafeng Zheng ◽  
Boyong Li ◽  
Yuanyuan Zuo

Radar beam blockage is an important error source that affects the quality of weather radar data. An echo-filling network (EFnet) is proposed based on a deep learning algorithm to correct the echo intensity under the occlusion area in the Nanjing S-band new-generation weather radar (CINRAD/SA). The training dataset is constructed by the labels, which are the echo intensity at the 0.5° elevation in the unblocked area, and by the input features, which are the intensity in the cube including multiple elevations and gates corresponding to the location of bottom labels. Two loss functions are applied to compile the network: one is the common mean square error (MSE), and the other is a self-defined loss function that increases the weight of strong echoes. Considering that the radar beam broadens with distance and height, the 0.5° elevation scan is divided into six range bands every 25 km to train different models. The models are evaluated by three indicators: explained variance (EVar), mean absolute error (MAE), and correlation coefficient (CC). Two cases are demonstrated to compare the effect of the echo-filling model by different loss functions. The results suggest that EFnet can effectively correct the echo reflectivity and improve the data quality in the occlusion area, and there are better results for strong echoes when the self-defined loss function is used.


Sign in / Sign up

Export Citation Format

Share Document