Fault injection framework for fault diagnosis based on machine learning in heating and demand-controlled ventilation systems

Author(s):  
Ali Behravan ◽  
Ahlam Mallak ◽  
Roman Obermaisser ◽  
Deepak Hanike Basavegowda ◽  
Christian Weber ◽  
...  
Energies ◽  
2020 ◽  
Vol 13 (24) ◽  
pp. 6669
Author(s):  
Jerzy Sowa ◽  
Maciej Mijakowski

Humidity-sensitive, demand-controlled ventilation systems have been in use for many years in regions with oceanic climates. Some attempts have been made to apply this technology in Poland, which has a continental climate. This article evaluates the performance and energy consumption of such a system when applied in an eight-floor, multiunit, residential building, i.e., the virtual reference building described by the National Energy Conservation Agency (NAPE), Poland. Simulations using the computer program CONTAM were performed for the whole heating season based upon the climate in Warsaw. Besides passive stack ventilation, that served as a reference, two ventilation systems were studied: one standard and one “hybrid” system with additional roof fans. This study confirmed that the application of humidity-sensitive, demand-controlled ventilation in multiunit residential buildings in a continental climate (Dfb) led to significant energy savings (up to 11.64 kWh/m2 of primary energy). However, the operation of the system on higher floors was found to be ineffective. Ensuring consistent operation of the system on all floors required supplementary fans. The introduction of a hybrid mode reduced carbon dioxide concentrations by approximately 32% in the units located in the upper part of the building. The energetic effect in such cases depends strongly on the electricity source. In the case of the national energy grid, savings of primary energy would be relatively low, i.e., 1.07 kWh/m2, but in the case of locally produced renewable energy, the energy savings would be equal to 5.18 kWh/m2.


2019 ◽  
Vol 111 ◽  
pp. 01051
Author(s):  
Klaas De Jonge ◽  
Arnold Janssens ◽  
Jelle Laverge

The performance assessment of ventilation systems often focusses only on CO2 and humidity levels. The indoor Volatile Organic Compounds (VOC) emissions of building materials or other products is thereby overlooked. The new generation of ventilation systems, Demand Controlled Ventilation (DCV), are systems that do not supply the nominal airflow continuously but are controlled by CO2 or humidity sensors in order to save energy. This poses potential problems for exposure to VOCs. In this study, a dynamic VOC model, which takes into account changing temperature and humidity that was derived from literature, is implemented in a CONTAM model of the Belgian reference apartment. The impact of a DCV system on the indoor VOC levels is investigated. Results show that the use of a dynamic model is necessary compared to the previously used approximation of a constant emission. Furthermore, on a system level, the influence of the ventilation system control on the indoor VOC levels shows. The overall VOC concentration in the different rooms will be higher because of lowered ventilation rates. Especially in rooms that are often unoccupied during the day, the accumulation of VOCs shows. In the development of DCV system controls, the aspect of VOC exposure should not be overlooked to be able to benefit from both the energy savings and improved Indoor Air Quality (IAQ).


Sign in / Sign up

Export Citation Format

Share Document