A High-Isolation Dual-Polarization Patch Antenna With Omnidirectional Radiation Patterns

2012 ◽  
Vol 11 ◽  
pp. 1273-1276 ◽  
Author(s):  
Changliang Deng ◽  
Pinghui Li ◽  
Wenquan Cao
2014 ◽  
Vol 2014 ◽  
pp. 1-10 ◽  
Author(s):  
Botao Feng ◽  
Shufang Li ◽  
Wenxing An ◽  
Weijun Hong ◽  
Sixing Yin

A novel differentially driven dual-polarized dual-wideband complementary patch antenna with high isolation is proposed for 2G/3G/LTE applications. In order to generate dual-polarization and dual-wideband properties, a pair of biorthogonal dual-layerη-shaped tapered line feeding structures is utilized to feed two pairs of dual-layer U-shaped patches, respectively. The upper-layer U-shaped patches mainly serve the upper frequency band, while the lower-layer ones chiefly work for the lower frequency band. Besides, a horned reflector is introduced to improve radiation patterns and provide stable gain. The prototype antenna can achieve a bandwidth of 25.7% (0.78 GHz–1.01 GHz) with a stable gain of7.8±0.7 dBi for the lower band, and a bandwidth of 45.7% (1.69 GHz–2.69 GHz) with a gain of9.5±1.1 dBi for the upper band. Input isolation exceeding 30 dB has been obtained in the wide bandwidth. Thus, it can be potentially used as a base station antenna for 2G/3G/LTE networks.


2018 ◽  
Vol 2018 ◽  
pp. 1-7
Author(s):  
Xujun Yang ◽  
Lei Ge ◽  
Dengguo Zhang ◽  
Chow-Yen-Desmond Sim

A dual-polarized aperture-coupled magnetoelectric (ME) dipole antenna is presented in this paper. The feeding network is based on substrate-integrated coaxial lines (SICLs). To describe the effect of the SICL on improving the isolation, the ME dipole with another two different feeding configurations, microstrip lines and striplines, respectively, is compared. As such, the coupling between the transmission lines is tremendously reduced and the isolation between the two input ports of different polarization is enhanced. An antenna prototype is fabricated and tested, exhibiting good performances, including an isolation level of higher than 30 dB between the two input ports and gains of more than 9.5 dBi. Besides, the proposed design is capable of achieving stable directional radiation patterns with cross-polarization levels lower than −22 dB and back radiation levels lower than −24 dB.


2014 ◽  
Vol 2014 ◽  
pp. 1-6 ◽  
Author(s):  
Chunxia Cheng ◽  
Fushun Zhang ◽  
Yangtao Wan ◽  
Fan Zhang

A miniaturized dual-frequency dual-polarization microstrip patch antenna with high isolation between receiving and transmitting ports (operating at 2.1 GHz for receiving and at 2.5 GHz for transmitting) is presented in this paper. The proposed antenna consists of a modified rectangular radiating patch, two 50 Ω microstrip feed lines, and two EBG filters. Two coupling microstrip lines are employed to excite two orthogonal fundamental modes (TM10and TM01). The high isolation is achieved by embedding two novel EBG filters underneath two feed lines to reject the incoming signal from the opposite line. Multilayer configuration, miniaturized EBG filters, and modified rectangular radiation patch contribute to size reduction. The total size is 0.67λ × 0.67λ × 0.03λ , only quarter of the multilayer rectangular radiation patch antenna (1.33λ × 1.33λ × 0.03λ) using common EBG filters with the same performance. Measured results on the reflection coefficients, isolations, and gains for the two frequencies are provided, which agree well with the numerical simulations. Also, measured isolations and radiation patterns at both two resonant frequencies are compared with the antenna without filters. The results show that the proposed method improves isolation by more than 20 dB with little influence on the radiation patterns.


Electronics ◽  
2020 ◽  
Vol 9 (8) ◽  
pp. 1223
Author(s):  
Hugo Santos ◽  
Pedro Pinho ◽  
Henrique Salgado

In this paper, we describe the design of a dual polarized packaged patch antenna for 5G communications with improved isolation and bandwidth for K-band. We introduce a differential feeding technique and a heuristic-based design of a matching network applied to a single layer patch antenna with parasitic elements. This approach resulted in broader bandwidth, reduced layer count, improved isolation and radiation pattern stability. The results were validated through finite element method (FEM) and method of moments (MoM) simulations. A peak gain of 5 dBi, isolation above 40 dB and a radiation efficiency of 60% were obtained.


Jurnal Teknik ◽  
2018 ◽  
Vol 7 (1) ◽  
Author(s):  
Heru Abrianto

Microstrip antenna which designed with dual feeding at 2.4 GHz and 5.8 GHz can meet WLAN (Wireless Local Area Network) application.Antenna fabrication use PCB FR4 double layer with thickness 1.6 mm and dielectric constant value 4.4. The length of patch antenna according to calculation 28.63 mm, but to get needed parameter length of patch should be optimized to 53 mm. After examination, this antenna has VSWR 1.212 at 2.42 GHz and 1.502 at 5.8 GHz, RL -13.94 dB at 2.42 GHz and -20.357 dB at 5.8 GHz, gain of antenna 6.16 dB at 2.42 GHz and 6.91 dB at 5.8 GHz, the radiation pattern is bidirectional. Keywords : microstrip antenna, wireless LAN, dual polarization, single feeding technique


Sign in / Sign up

Export Citation Format

Share Document