Compact and Closely Spaced Metamaterial MIMO Antenna With High Isolation for Wireless Applications

2013 ◽  
Vol 12 ◽  
pp. 1452-1455 ◽  
Author(s):  
Mahmoud A. Abdalla ◽  
Ahmed A. Ibrahim
Author(s):  
Nithya Dorairajan ◽  
Chitra M. Perumal ◽  
Swetha Vedhagiri ◽  
S.B. Parvin Banu ◽  
Sivapriya Veluchamy ◽  
...  

Author(s):  
B Shruthi, Et. al.

A multiple-input-multiple-output lightweight printed ultrawideband antenna among a dimension about 40×50mm2to minimise the coupling between these two antennas, the proposed antenna with a quarter circular radiating patch, with defected ground structure is designed. The antenna developed by MIMO is highly isolated, stronger than -15dB. In the working band, from 2.67GHz to 14GHz. The simulation indicates that the proposed MIMO antenna will balance the complete enhanced band with a broad bandwidth by making use of CST. It operates at 5.83GHz, 8.07GHz, 12.28GHz and bandwidth tends to cover the ultrawideband range. UWB band and high isolation, that assemblesit perfect for any application of wireless modules in the UWB range, in order to minimise coupling. For indoor applications and wireless applications these frequency range is used.


2018 ◽  
Vol 60 (6) ◽  
pp. 1476-1481 ◽  
Author(s):  
Yu Liu ◽  
Ming Liu ◽  
Fang Xu ◽  
Jie Xu ◽  
Xiangdong Huang

2021 ◽  
Vol 11 (5) ◽  
pp. 2382
Author(s):  
Rongguo Song ◽  
Xiaoxiao Chen ◽  
Shaoqiu Jiang ◽  
Zelong Hu ◽  
Tianye Liu ◽  
...  

With the development of 5G, Internet of Things, and smart home technologies, miniaturized and compact multi-antenna systems and multiple-input multiple-output (MIMO) antenna arrays have attracted increasing attention. Reducing the coupling between antenna elements is essential to improving the performance of such MIMO antenna system. In this work, we proposed a graphene-assembled, as an alternative material rather than metal, film-based MIMO antenna array with high isolation for 5G application. The isolation of the antenna element is improved by a graphene assembly film (GAF) frequency selective surface and isolation strip. It is shown that the GAF antenna element operated at 3.5 GHz has the realized gain of 2.87 dBi. The addition of the decoupling structure improves the isolation of the MIMO antenna array to more than 10 dB and corrects the antenna radiation pattern and operating frequency. The isolation between antenna elements with an interval of 0.4λ is above 25 dB. All experimental results show that the GAF antenna and decoupling structure are efficient devices for 5G mobile communication.


Sign in / Sign up

Export Citation Format

Share Document