Ultra-Wideband Antipodal Tapered Slot Antenna with Reflectionless Notched Band

Author(s):  
Jinlun Li ◽  
Hongtai Chen ◽  
Jialin Wang ◽  
Shunli Li ◽  
Xiaoxing Yin ◽  
...  
Author(s):  
Boualem Hammache ◽  
Abderraouf Messai ◽  
Idris Messaoudene ◽  
Tayeb A. Denidni

2021 ◽  
Vol 11 (8) ◽  
pp. 3606
Author(s):  
Seonho Lim ◽  
Young Joong Yoon

In this paper, a wideband-narrowband switchable tapered slot antenna (TSA) with a compact meander line resonator for an integrated microwave imaging and hyperthermia system was proposed. A compact meander line resonator, which exhibited band-pass characteristics and provided narrowband characteristics by using one PIN diode, was fabricated beneath the tapered slot of the wideband TSA to minimize the degradation of the wideband characteristics. Moreover, the electromagnetic energy was transferred to the meander line resonator with a coupling effect to ensure effective frequency switching. By adapting a PIN diode on the meander line resonator, frequency switching could be achieved. In this way, the proposed antenna could operate in a real-time frequency switching mode between the ultra-wideband (UWB; 3.1~10 GHz), which is used for microwave imaging, and the 2.45 GHz band (industrial, scientific, and medical, ISM band), which is used for microwave hyperthermia. Frequency and time-domain results proved the applicability of the proposed antenna to an integrated breast cancer detection and treatment system.


Author(s):  
Sumon Modak ◽  
Taimoor Khan

Abstract This study presents a novel configuration of a cuboidal quad-port ultra-wideband multiple-input and multiple-output antenna with WLAN rejection characteristics. The designed antenna consists of four F-shaped elements backed by a partial ground plane. A 50 Ω microstrip line is used to feed the proposed structure. The geometry of the suggested antenna exhibits an overall size of 23 × 23 × 19 mm3, and the antenna produces an operational bandwidth of 7.6 GHz (3.1–10.7 GHz). The notched band characteristic at 5.4 GHz is accomplished by loading a pair of spiral electromagnetic bandgap structures over the ground plane. Besides this, other diversity features such as envelope correlation coefficient, and diversity gain are also evaluated. Furthermore, the proposed antenna system provides an isolation of −15 dB without using any decoupling structure. Therefore, to validate the reported design, a prototype is fabricated and characterized. The overall simulated performance is observed in very close agreement with it's measured counterpart.


Micromachines ◽  
2021 ◽  
Vol 12 (3) ◽  
pp. 269
Author(s):  
Ayman A. Althuwayb ◽  
Mohammad Alibakhshikenari ◽  
Bal S. Virdee ◽  
Pancham Shukla ◽  
Ernesto Limiti

This research article describes a technique for realizing wideband dual notched functionality in an ultra-wideband (UWB) antenna array based on metamaterial and electromagnetic bandgap (EBG) techniques. For comparison purposes, a reference antenna array was initially designed comprising hexagonal patches that are interconnected to each other. The array was fabricated on standard FR-4 substrate with thickness of 0.8 mm. The reference antenna exhibited an average gain of 1.5 dBi across 5.25–10.1 GHz. To improve the array’s impedance bandwidth for application in UWB systems metamaterial (MTM) characteristics were applied it. This involved embedding hexagonal slots in patch and shorting the patch to the ground-plane with metallic via. This essentially transformed the antenna to a composite right/left-handed structure that behaved like series left-handed capacitance and shunt left-handed inductance. The proposed MTM antenna array now operated over a much wider frequency range (2–12 GHz) with average gain of 5 dBi. Notched band functionality was incorporated in the proposed array to eliminate unwanted interference signals from other wireless communications systems that coexist inside the UWB spectrum. This was achieved by introducing electromagnetic bandgap in the array by etching circular slots on the ground-plane that are aligned underneath each patch and interconnecting microstrip-line in the array. The proposed techniques had no effect on the dimensions of the antenna array (20 mm × 20 mm × 0.87 mm). The results presented confirm dual-band rejection at the wireless local area network (WLAN) band (5.15–5.825 GHz) and X-band satellite downlink communication band (7.10–7.76 GHz). Compared to other dual notched band designs previously published the footprint of the proposed technique is smaller and its rejection notches completely cover the bandwidth of interfering signals.


2019 ◽  
Vol 11 (10) ◽  
pp. 1010-1016
Author(s):  
Hailong Yang ◽  
Xiaoli Xi ◽  
Lili Wang ◽  
Yuchen Zhao ◽  
Xiaomin Shi

AbstractIn this study, a new ultra-wideband (UWB) band-edge selectivity antenna with a modified radiation slot using defected ground structure (DGS) is presented to obtain bandpass filtering reflection coefficient and gain performance. The well-designed DGS is designed on backside metallic of the substrate and can be seen as a low-pass filter that provides a good roll-off at a higher frequency. By connecting the DGS and the stepped slot and making them merge with each other, good cut-off property in the upper passband and better in-band impedance characteristics are obtained. Measured results show that the proposed design not only shows good band-edge selectivity in reflection coefficient and gain performance but also has a good impedance matching of −13.5 dB reflection coefficients and a good radiation efficiency of 90% in the operating frequencies. The measured bandwidth defined with the reflection coefficient less than −10 dB is from 3.1–11.2 GHz. Furthermore, the size of the filtering UWB antenna is 22 mm × 12 mm, which is smaller than many individual UWB antennas and UWB filters.


2014 ◽  
Vol 50 (3) ◽  
pp. 139-141 ◽  
Author(s):  
I. Messaoudene ◽  
T.A. Denidni ◽  
A. Benghalia

2014 ◽  
Vol 8 (1) ◽  
pp. 29-38 ◽  
Author(s):  
Dae Heon Lee ◽  
Hae‐Yong Yang ◽  
Young‐Ki Cho

2010 ◽  
Vol 13 ◽  
pp. 149-158 ◽  
Author(s):  
Farooq Amini ◽  
Mohammad Naghi Azarmanesh ◽  
Mohammad Ojaroudi
Keyword(s):  

Sign in / Sign up

Export Citation Format

Share Document