scholarly journals Growing Season Precipitation Rather than Growing Season Length Predominates Maximum Normalized Difference Vegetation Index in Alpine Grasslands on the Tibetan Plateau

2020 ◽  
Vol 12 (3) ◽  
pp. 968
Author(s):  
Jiang Wei Wang ◽  
Meng Li ◽  
Guang Yu Zhang ◽  
Hao Rui Zhang ◽  
Cheng Qun Yu

Precipitation and growing season length (GSL) are vital abiotic and biotic variables in controlling vegetation productivity in alpine regions. However, their relative effects on vegetation productivity have not been fully understood. In this study, we examined the responses of the maximum normalized difference vegetation index (NDVImax) to growing season precipitation (GSP) and GSL from 2000 to 2013 in 36 alpine grassland sites on the Tibetan Plateau. Our results indicated that NDVImax showed a positive relationship with prolonged GSL (R2 = 0.12) and GSP (R2 = 0.39). The linear slope of NDVImax increased with that of GSP rather than GSL. Therefore, GSP had a stronger effect on NDVImax than did GSL in alpine grasslands on the Tibetan Plateau.

2018 ◽  
Vol 10 (8) ◽  
pp. 1293 ◽  
Author(s):  
Yunpeng Luo ◽  
Tarek S. El-Madany ◽  
Gianluca Filippa ◽  
Xuanlong Ma ◽  
Bernhard Ahrens ◽  
...  

Tree–grass ecosystems are widely distributed. However, their phenology has not yet been fully characterized. The technique of repeated digital photographs for plant phenology monitoring (hereafter referred as PhenoCam) provide opportunities for long-term monitoring of plant phenology, and extracting phenological transition dates (PTDs, e.g., start of the growing season). Here, we aim to evaluate the utility of near-infrared-enabled PhenoCam for monitoring the phenology of structure (i.e., greenness) and physiology (i.e., gross primary productivity—GPP) at four tree–grass Mediterranean sites. We computed four vegetation indexes (VIs) from PhenoCams: (1) green chromatic coordinates (GCC), (2) normalized difference vegetation index (CamNDVI), (3) near-infrared reflectance of vegetation index (CamNIRv), and (4) ratio vegetation index (CamRVI). GPP is derived from eddy covariance flux tower measurement. Then, we extracted PTDs and their uncertainty from different VIs and GPP. The consistency between structural (VIs) and physiological (GPP) phenology was then evaluated. CamNIRv is best at representing the PTDs of GPP during the Green-up period, while CamNDVI is best during the Dry-down period. Moreover, CamNIRv outperforms the other VIs in tracking growing season length of GPP. In summary, the results show it is promising to track structural and physiology phenology of seasonally dry Mediterranean ecosystem using near-infrared-enabled PhenoCam. We suggest using multiple VIs to better represent the variation of GPP.


2020 ◽  
Vol 12 (17) ◽  
pp. 2751
Author(s):  
Yan Wang ◽  
Dailiang Peng ◽  
Miaogen Shen ◽  
Xiyan Xu ◽  
Xiaohua Yang ◽  
...  

The Tibetan Plateau (TP) is one of the most sensitive regions to global climate warming, not only at the inter-annual time scale but also at the altitudinal scale. We aim to investigate the contrasting effects of temperature and precipitation on vegetation greenness at different altitudes across the TP. In this study, interannual and elevational characteristics of the Normalized Difference Vegetation Index (NDVI), temperature, and precipitation were examined during the growing season from 1982 to 2015. We compared the elevational movement rates of the isolines of NDVI, temperature, and precipitation, and the sensitivities of elevational NDVI changes to temperature and precipitation. The results show that from 1982 to 2015, the elevational variation rate of isolines for NDVI mismatched with that for temperature and precipitation. The elevational movements of NDVI isolines were mostly controlled by precipitation at elevations below 2400 m and by the temperature at elevations above 2400 m. Precipitation appears to plays a role similar to temperature, and even a more effective role than the temperature at low elevations, in controlling elevational vegetation greenness changes at both spatial and interannual scales in the TP. This study highlights the regulation of temperature and precipitation on vegetation ecosystems along elevation gradients over the whole TP under global warming conditions.


Author(s):  
Y. K. Zhou

Global environmental change is rapidly altering the dynamics of terrestrial vegetation, and phenology is a classic proxy to detect the response of vegetation to the changes. On the Tibetan Plateau, the earlier spring and delayed autumn vegetation phenology is widely reported. Remotely sensed NDVI can serve as a good data source for vegetation phenology study. Here GIMMS NDVI3g data was used to detect vegetation phenology status on the Tibetan Plateau. The spatial and temporal gradients are combined to depict the velocity of vegetation expanding process. This velocity index represents the instantaneous local velocity along the Earth’s surface needed to maintain constant vegetation condition. This study found that NDVI velocity show a complex spatial pattern. A considerable number of regions display a later starting of growing season (SOS) and earlier end of growing season (EOS) reflected by the velocity change, particularly in the central part of the plateau. Nearly 74 % vegetation experienced a shortened growing season length. Totally, the magnitude of the phenology velocity is at a small level that reveals there is not a significant variation of vegetation phenology under the climate change context.


Author(s):  
Yixin Zhang ◽  
Guoce Xu ◽  
Peng Li ◽  
Zhanbin Li ◽  
Yun Wang ◽  
...  

As the “roof of the world”, the Tibetan Plateau (TP) is a unique geographical unit on Earth. In recent years, vegetation has gradually become a key factor reflecting the ecosystem since it is sensitive to ecological changes especially in arid and semi-arid areas. Based on the normalized difference vegetation index (NDVI) dataset of TP from 2000 to 2015, this study analyzed the characteristics of vegetation variation and the correlation between vegetation change and climatic factors at different time scales, based on a Mann–Kendall trend analyses, the Hurst exponent, and the Pettitt change-point test. The results showed that the vegetation fractional coverage (VFC) generally increased in the past 16 years, with 60.3% of the TP experiencing an increase, of which significant (p < 0.05) increases accounted for 28.79% and were mainly distributed in the north of the TP. Temperature had the largest response with the VFC on the seasonal scale. During the growing season, the correlation between precipitation and sunshine duration with VFC was high (p < 0.05). The change-points of the VFC were mainly distributed in the north of the TP during 2007–2009. Slope and elevation had an impact on the VFC; the areas with large vegetation change are mainly distributed in slopes <20° and elevation of 3000–5000 m. For elevation above 3000–4000 m, the response of the VFC to precipitation and temperature was the strongest. This study provided important information for ecological environment protection and ecosystem degradation on the Tibetan Plateau.


Sign in / Sign up

Export Citation Format

Share Document