Asymmetric Ultra-Wideband Microstrip-to-Coplanar Stripline Transition

2018 ◽  
Vol 28 (5) ◽  
pp. 386-388 ◽  
Author(s):  
Gwan Hui Lee ◽  
Wahab Mohyuddin ◽  
Hyun Chul Choi ◽  
Kang Wook Kim
Electronics ◽  
2020 ◽  
Vol 9 (12) ◽  
pp. 2169
Author(s):  
Syifa Haunan Nashuha ◽  
Gwan Hui Lee ◽  
Sachin Kumar ◽  
Hyun Chul Choi ◽  
Kang Wook Kim

The design and implementation of an ultra-wideband trapezoidal log-periodic antenna (LPA) integrated with an elliptical dielectric lens are presented. The proposed LPA is fed by an ultra-wideband microstrip-to-coplanar stripline transition structure. In order to improve the radiation patterns and to increase the antenna gain, an elliptical dielectric lens is mounted on the top of the LPA radiator. The design parameters of the elliptical lens integrated with the LPA were optimized through a parametric analysis. The proposed antenna shows an impedance bandwidth (S11 ≤ −10 dB) from 5.2 to 40 GHz, with a peak gain of 17.8 dB.


2018 ◽  
Vol 2018 ◽  
pp. 1-6
Author(s):  
Yufu Li ◽  
XiaoXing Yin

The implementation of a output-input inverse polarity pulse power divider based on the use of a SMA directly feed asymmetric coplanar stripline phase inverter for ultra-wideband communication is proposed. The novelty of the proposed power divider can be demonstrated that the electromagnetic energy guided by the CPW divides naturally into the slots of two asymmetric coplanar striplines and the polarity of the input pulse be reversed by asymmetric coplanar stripline to SMA transition. SMA connectors are mounted directly to the output asymmetric coplanar striplines and seven pairs of metal rods are soldered vertically to the substrate with seven resistors on top for improving the isolation and matching performance. The simulated and measured result in frequency domain agree well showing equal power division with less than 2 dB of additional insertion loss and in-phase for the outputs ports across the desired band of 0.4 GHz to 4.0 GHz (one decade) which indicates an ultra-wideband feature. The return loss for all the ports and the isolation between the two output ports are better than 10 dB which demonstrates good matching and isolation performance. To illustrate the short pulse performance of the proposed power divider, Inverse Fourier Transformation is used to calculate the input and output signals. The Gaussian pulse with a −10 dB bandwidth is utilized as the stimulus signal and the port signals in time domain are derived from the measured scattering parameters and discussed. Time domain results show that the same magnitude of the pulse is obtained between the two outputs and the polarity of the output pulse has been inversed compared to the input one. Simulated and measured results in both frequency and time domain agree well and show the feasibility and validity of the proposed power dividers.


Electronics ◽  
2021 ◽  
Vol 10 (11) ◽  
pp. 1272
Author(s):  
Gwan Hui Lee ◽  
Wahab Mohyuddin ◽  
Sachin Kumar ◽  
Hyun Chul Choi ◽  
Kang Wook Kim

A design of a compact coplanar strip (CPS)-to-microstrip line (MSL) transition using a bended structure on a two-layered substrate is presented. The proposed transition consists of a CPS taper and a bended CPS-to-MSL transition on a two-layered substrate. The CPS taper is formed on the lower substrate with low permittivity (εr = 3.38), and the bended CPS-to-MSL transition is formed on the upper substrate with high permittivity (εr= 10.2). The proposed transition is designed with analytical formulas obtained by applying EM-based conformal mapping without parametric tuning trials. The conductor shape of the bended CPS-to-MSL transition is adjusted to form an optimal Klopfenstein impedance taper. The proposed CPS-to-MSL transition optimally connects between a high impedance CPS line (~160 Ω) and a 50 Ω MSL, which typically results in a long transition length for ultra-wideband performance. The implemented transition bended in a sinusoid shape on the two-layered substrate provides good performance from 2 GHz to 17 GHz with the maximum 2 dB insertion loss per transition, and the horizontal length of the bended transition is reduced to 42.9% of the straight transition length. This bended transition is developed for use in mm-wave balanced antenna/detector feeds but can be applied to a variety of wideband balanced circuit modules, where compact circuit size is critical.


2018 ◽  
Vol 10 (8) ◽  
pp. 870-876
Author(s):  
Yunfeng Dong ◽  
Tom K. Johansen ◽  
Vitaliy Zhurbenko

AbstractThis paper presents an ultra-wideband coplanar waveguide (CPW)-to-asymmetric coplanar stripline (ACPS) transition based on aluminum nitride (AlN) substrate. The concepts of designing CPW, ACPS, and CPW-to-ACPS transition are explained. In order to suppress parasitic modes, vias going through AlN substrate are added along the ground traces. The signal trace is tapered out and chamfered to reduce the reflection caused by the termination of ground trace. The CPW-to-ACPS transition is designed, fabricated, and measured in a back-to-back configuration. The fabricated CPW-to-ACPS transition can provide a bandwidth of 165 GHz with an associated insertion loss of 3 dB.


Sign in / Sign up

Export Citation Format

Share Document