Additive Manufacturing of a High-Performance $Q$ -Band Circular TE01 Mode Flared-Type Transducer

2019 ◽  
Vol 29 (9) ◽  
pp. 577-579 ◽  
Author(s):  
Miguel Gonzalez-Calvo ◽  
Jose R. Montejo-Garai ◽  
Jorge A. Ruiz-Cruz ◽  
Jesus M. Rebollar
Polymers ◽  
2021 ◽  
Vol 13 (9) ◽  
pp. 1455
Author(s):  
David T. Bird ◽  
Nuggehalli M. Ravindra

The US Department of Defense (DoD) realizes the many uses of additive manufacturing (AM) as it has become a common fabrication technique for an extensive range of engineering components in several industrial sectors. 3D Printed (3DP) sensor technology offers high-performance features as a way to track individual warfighters on the battlefield, offering protection from threats such as weaponized toxins, bacteria or virus, with real-time monitoring of physiological events, advanced diagnostics, and connected feedback. Maximum protection of the warfighter gives a distinct advantage over adversaries by providing an enhanced awareness of situational threats on the battle field. There is a need to further explore aspects of AM such as higher printing resolution and efficiency, with faster print times and higher performance, sensitivity and optimized fabrication to ensure that soldiers are more safe and lethal to win our nation’s wars and come home safely. A review and comparison of various 3DP techniques for sensor fabrication is presented.


2021 ◽  
Author(s):  
Alexander Matschinski ◽  
Tim Osswald ◽  
Klaus Drechsler

The market segment of additive manufacturing is showing an annual growth of more than ten percent, with extrusion-based processes being the larger segment of the market. The scope of use is limited to secondary structures. Equipment manufacturers try to guarantee constant material characteristics by closed systems. The characteristic values are up to 50% below the ones from injection molding. The processing of high-performance polymers with reinforcing fibers is an additional challenge. Further development requires an opening of the material and manufacturing systems. The guidelines and standardization for this are still missing. For this reason, a functional analysis (FA) according to TRIZ ("theory of the resolution of invention-related tasks") is performed within this study. This identifies the undesired functions and quantifies their coupling with process components and parameters. In the FA, the manufactured part is the target component in order to address its quality. This way the FA identifies five undesirable functions in the process. These are: deform, cool, weaken, swell and shape. For hightemperature thermoplastics, thermal shrinkage is the primary cause of geometric tolerance. Therefore, the deformation is largely dependent on the cooling mechanism. For a detailed analysis, the polymer melt is further disassembled. The results are six sub-components. The weakening is mainly due to the physical phase of the voids, which exists during the entire processing. The breakdown comprises physical fields such as stress, temperature and flow. These determine the output properties as well as the bonding between the layers. The associated functions are the swelling and shaping. In order to generate broadly applicable standardizations, research questions for further investigation are derived from this study.


2021 ◽  
Author(s):  
SOYEON PARK ◽  
KUN (KELVIN) FU

Polymer nanocomposites have advantages in mechanical, electrical, and optical properties compared to individual components. These unique properties of the nanocomposites have attracted attention in many applications, including electronics, robotics, biomedical fields, automotive industries. To achieve their high performance, it is crucial to control the orientation of nanomaterials within the polymer matrix. For example, the electric conductivity will be maximized in the ordered direction of conductive nanomaterials such as graphene and carbon nanotubes (CNTs). Conventional fabrication methods are commonly used to obtain polymer nanocomposites with the controlled alignment of nanomaterials using electric or magnetic fields, fluid flow, and shear forces. Such approaches may be complex in preparing a manufacturing system, have low fabrication rate, and even limited structure scalability and complexity required for customized functional products. Recently, additive manufacturing (AM), also called 3D printing, has been developed as a major fabrication technology for nanocomposites with aligned reinforcements. AM has the ability to control the orientation of nanoparticles and offers a great way to produce the composites with cost-efficiency, high productivity, scalability, and design flexibility. Herein, we propose a manufacturing process using AM for the architected structure of polymer nanocomposites with oriented nanomaterials using a polylactic acid polymer as the matrix and graphite and CNTs as fillers. AM can achieve the aligned orientation of the nanofillers along the printing direction. Thus, it enables the fabrication of multifunctional nanocomposites with complex shapes and higher precision, from micron to macro scale. This method will offer great opportunities in the advanced applications that require complex multiscale structures such as energy storage devices (e.g., batteries and supercapacitors) and structural electronic devices (e.g., circuits and sensors).


Author(s):  
Paul Ryan ◽  
Jan Schwerdtfeger ◽  
Markus Rodermann

Compared to conventional manufacturing processes, additive manufacturing offers a degree of freedom that has the potential to revolutionize the turbine components supply chain. Additive manufacturing facilitates the design and manufacture of highly complex components in high performance materials with features that cannot currently be realized with other processes. In addition, shorter development and manufacturing lead-times are possible due to the flexibility of 3D based processing and the absence of expensive, complicated molds or dies. Having been confined for many years to rapid prototyping or R&D applications, additive manufacturing is now making the move to the factory floor. However, a dearth of manufacturing experience makes the development effort and risk of costly mistakes a deterrent for many organizations that would otherwise be interested in exploring the benefits of additive manufacturing. A former manufacturer of industrial gas turbines recently established an additive manufacturing workshop designed to deliver highly complex engine-ready components that can contribute to increased performance of the gas turbine. A strong emphasis on process validation and implementation of the organization’s best practice Lean and Quality methodologies has laid solid foundations for a highly capable manufacturing environment. This paper describes the approach taken to ensure that the workshop achieves a high level of operational excellence. Process development topics explored in the paper include the following: • Planning of process flow and cell layout to permit the maximum lean performance • Strategy used to determine machine specification and selection method. • Assessment of process capability • Influence of design for manufacture on process efficiency and product quality • Experience gained during actual production of first commercial components


Micromachines ◽  
2021 ◽  
Vol 13 (1) ◽  
pp. 73
Author(s):  
Marina Garcia-Cardosa ◽  
Francisco-Javier Granados-Ortiz ◽  
Joaquín Ortega-Casanova

In recent years, additive manufacturing has gained importance in a wide range of research applications such as medicine, biotechnology, engineering, etc. It has become one of the most innovative and high-performance manufacturing technologies of the moment. This review aims to show and discuss the characteristics of different existing additive manufacturing technologies for the construction of micromixers, which are devices used to mix two or more fluids at microscale. The present manuscript discusses all the choices to be made throughout the printing life cycle of a micromixer in order to achieve a high-quality microdevice. Resolution, precision, materials, and price, amongst other relevant characteristics, are discussed and reviewed in detail for each printing technology. Key information, suggestions, and future prospects are provided for manufacturing of micromixing machines based on the results from this review.


Author(s):  
Markus Hatzenbichler ◽  
Ruth Felzmann ◽  
Simon Gruber ◽  
Gerald Mitteramskogler ◽  
Passakorn Tesavibul ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document