ADDITIVE MANUFACTURING OF HIGH-LOADING POLYMER NANOCOMPOSITES WITH MULTISCALE ALIGNMENT

2021 ◽  
Author(s):  
SOYEON PARK ◽  
KUN (KELVIN) FU

Polymer nanocomposites have advantages in mechanical, electrical, and optical properties compared to individual components. These unique properties of the nanocomposites have attracted attention in many applications, including electronics, robotics, biomedical fields, automotive industries. To achieve their high performance, it is crucial to control the orientation of nanomaterials within the polymer matrix. For example, the electric conductivity will be maximized in the ordered direction of conductive nanomaterials such as graphene and carbon nanotubes (CNTs). Conventional fabrication methods are commonly used to obtain polymer nanocomposites with the controlled alignment of nanomaterials using electric or magnetic fields, fluid flow, and shear forces. Such approaches may be complex in preparing a manufacturing system, have low fabrication rate, and even limited structure scalability and complexity required for customized functional products. Recently, additive manufacturing (AM), also called 3D printing, has been developed as a major fabrication technology for nanocomposites with aligned reinforcements. AM has the ability to control the orientation of nanoparticles and offers a great way to produce the composites with cost-efficiency, high productivity, scalability, and design flexibility. Herein, we propose a manufacturing process using AM for the architected structure of polymer nanocomposites with oriented nanomaterials using a polylactic acid polymer as the matrix and graphite and CNTs as fillers. AM can achieve the aligned orientation of the nanofillers along the printing direction. Thus, it enables the fabrication of multifunctional nanocomposites with complex shapes and higher precision, from micron to macro scale. This method will offer great opportunities in the advanced applications that require complex multiscale structures such as energy storage devices (e.g., batteries and supercapacitors) and structural electronic devices (e.g., circuits and sensors).

Polymers ◽  
2020 ◽  
Vol 12 (3) ◽  
pp. 505 ◽  
Author(s):  
Samarjeet Singh Siwal ◽  
Qibo Zhang ◽  
Nishu Devi ◽  
Vijay Kumar Thakur

In recent years, numerous discoveries and investigations have been remarked for the development of carbon-based polymer nanocomposites. Carbon-based materials and their composites hold encouraging employment in a broad array of fields, for example, energy storage devices, fuel cells, membranes sensors, actuators, and electromagnetic shielding. Carbon and its derivatives exhibit some remarkable features such as high conductivity, high surface area, excellent chemical endurance, and good mechanical durability. On the other hand, characteristics such as docility, lower price, and high environmental resistance are some of the unique properties of conducting polymers (CPs). To enhance the properties and performance, polymeric electrode materials can be modified suitably by metal oxides and carbon materials resulting in a composite that helps in the collection and accumulation of charges due to large surface area. The carbon-polymer nanocomposites assist in overcoming the difficulties arising in achieving the high performance of polymeric compounds and deliver high-performance composites that can be used in electrochemical energy storage devices. Carbon-based polymer nanocomposites have both advantages and disadvantages, so in this review, attempts are made to understand their synergistic behavior and resulting performance. The three electrochemical energy storage systems and the type of electrode materials used for them have been studied here in this article and some aspects for example morphology, exterior area, temperature, and approaches have been observed to influence the activity of electrochemical methods. This review article evaluates and compiles reported data to present a significant and extensive summary of the state of the art.


Ionics ◽  
2021 ◽  
Author(s):  
Morteza Saghafi Yazdi ◽  
Seied Ali Hosseini ◽  
Zeynodin Karami ◽  
Ali Olamaee ◽  
Mohammad Abedini ◽  
...  

Nanomaterials ◽  
2021 ◽  
Vol 11 (2) ◽  
pp. 372
Author(s):  
Liyang Lin ◽  
Susu Chen ◽  
Tao Deng ◽  
Wen Zeng

The metal oxides/graphene nanocomposites have great application prospects in the fields of electrochemical energy storage and gas sensing detection. However, rational synthesis of such materials with good conductivity and electrochemical activity is the topical challenge for high-performance devices. Here, SnO2/graphene nanocomposite is taken as a typical example and develops a universal synthesis method that overcome these challenges and prepares the oxygen-deficient SnO2 hollow nanospheres/graphene (r-SnO2/GN) nanocomposite with excellent performance for supercapacitors and gas sensors. The electrode r-SnO2/GN exhibits specific capacitance of 947.4 F g−1 at a current density of 2 mA cm−2 and of 640.0 F g−1 even at 20 mA cm−2, showing remarkable rate capability. For gas-sensing application, the sensor r-SnO2/GN showed good sensitivity (~13.8 under 500 ppm) and short response/recovering time toward methane gas. These performance features make r-SnO2/GN nanocomposite a promising candidate for high-performance energy storage devices and gas sensors.


2021 ◽  
Vol 12 (1) ◽  
Author(s):  
Jing Hu ◽  
Xiaomin Tang ◽  
Qing Dai ◽  
Zhiqiang Liu ◽  
Huamin Zhang ◽  
...  

AbstractMembranes with fast and selective ions transport are highly demanded for energy storage devices. Layered double hydroxides (LDHs), bearing uniform interlayer galleries and abundant hydroxyl groups covalently bonded within two-dimensional (2D) host layers, make them superb candidates for high-performance membranes. However, related research on LDHs for ions separation is quite rare, especially the deep-going study on ions transport behavior in LDHs. Here, we report a LDHs-based composite membrane with fast and selective ions transport for flow battery application. The hydroxide ions transport through LDHs via vehicular (standard diffusion) & Grotthuss (proton hopping) mechanisms is uncovered. The LDHs-based membrane enables an alkaline zinc-based flow battery to operate at 200 mA cm−2, along with an energy efficiency of 82.36% for 400 cycles. This study offers an in-depth understanding of ions transport in LDHs and further inspires their applications in other energy-related devices.


Author(s):  
Longtao Ren ◽  
Qian Wang ◽  
Yajie Li ◽  
Cejun Hu ◽  
Yajun Zhao ◽  
...  

Rechargeable lithium-sulfur (Li–S) batteries are considered one of the most promising next-generation energy storage devices because of their high theoretical energy density. However, the dissolution of lithium polysulfides (LiPSs) in...


RSC Advances ◽  
2019 ◽  
Vol 9 (60) ◽  
pp. 35045-35049
Author(s):  
Xu Chen ◽  
Jian Zhou ◽  
Jiarui Li ◽  
Haiyan Luo ◽  
Lin Mei ◽  
...  

High-performance lithium ion batteries are ideal energy storage devices for both grid-scale and large-scale applications.


2018 ◽  
Vol 18 (12) ◽  
pp. 8352-8359 ◽  
Author(s):  
Xibin Liu ◽  
Gaohua liao ◽  
Xiang Qi ◽  
Xiaoan Mei ◽  
Jifei Wang ◽  
...  

Hybrid fibers based on MnO2/reduced graphene oxide have been fabricated for flexible energy storage devices. Graphene oxide nanoflakes were reduced in a polytetrafluoroethylene (PTFE) pipeline under the appropriate condition to develop a fiber current collector, which also provides the possibility of weaving. The RGO fiber with the radius of about 35 μm has a resistance of 150 Ω · cm. MnO2 nanoflakes directly grow on the RGO fiber surface acting as the electrode material of the device. The MnO2/RGO hybrid fibers provide excellent energy storage performances. The as-fabricated SC exhibits a high areal capacitance of 1.37 F·cm−2 at the scan rate of 1 mV·s−1, and outstanding long-term cycling stability of 93.75% retention after 5000 cycles. This work demonstrates a cost-effective and versatile strategy for wearable energy storage devices.


Sign in / Sign up

Export Citation Format

Share Document