Establishment of a Competitive Additive Manufacturing Workshop

Author(s):  
Paul Ryan ◽  
Jan Schwerdtfeger ◽  
Markus Rodermann

Compared to conventional manufacturing processes, additive manufacturing offers a degree of freedom that has the potential to revolutionize the turbine components supply chain. Additive manufacturing facilitates the design and manufacture of highly complex components in high performance materials with features that cannot currently be realized with other processes. In addition, shorter development and manufacturing lead-times are possible due to the flexibility of 3D based processing and the absence of expensive, complicated molds or dies. Having been confined for many years to rapid prototyping or R&D applications, additive manufacturing is now making the move to the factory floor. However, a dearth of manufacturing experience makes the development effort and risk of costly mistakes a deterrent for many organizations that would otherwise be interested in exploring the benefits of additive manufacturing. A former manufacturer of industrial gas turbines recently established an additive manufacturing workshop designed to deliver highly complex engine-ready components that can contribute to increased performance of the gas turbine. A strong emphasis on process validation and implementation of the organization’s best practice Lean and Quality methodologies has laid solid foundations for a highly capable manufacturing environment. This paper describes the approach taken to ensure that the workshop achieves a high level of operational excellence. Process development topics explored in the paper include the following: • Planning of process flow and cell layout to permit the maximum lean performance • Strategy used to determine machine specification and selection method. • Assessment of process capability • Influence of design for manufacture on process efficiency and product quality • Experience gained during actual production of first commercial components


Author(s):  
Andrea Vitali ◽  
Daniele Regazzoni ◽  
Caterina Rizzi ◽  
Giorgio Colombo

Additive Manufacturing (AM) is not only an innovative approach of fabrication but it fosters a new paradigm to design products. The possibility to confer inhomogeneous properties to the product provides an important design key. This paper concerns the design and manufacture of medical devices that require a high level of customization. We focus the attention on lower limb prosthesis and in particular on the prosthetic socket. The proposed method is centered on the virtual modeling of patient’s residual limb and the virtual process is highly integrated and the data flow is as fluid as possible. Three main phases can be identified: design, validation and manufacture of the socket. Firstly, the technician uses the Socket Modeling Assistant (SMA) tool to design the socket shape. Then, a numerical simulation is run to check pressure distribution and validate the socket shape. Finally, a multi-material 3D printer is used to build the socket. Preliminary results are presented and conclusions are drawn concerning the challenge of multi-material 3D printing of the socket.



Author(s):  
Olov Andersson ◽  
Andreas Graichen ◽  
Håkan Brodin ◽  
Vladimir Navrotsky

Low emission combustion is one of the most important requirements for Industrial gas turbines. Siemens Industrial gas turbines SGT-800 and SGT-700 use DLE (Dry Low Emission) technology and are equipped with 3rd generation of DLE burners. These burners demonstrate high performance and reliable operation for the duration of their design lifetime. The design and shape of the burner tip is of great importance in order to achieve a good fuel/ air mixture and at the same time a resistance to the fatigue created by heat radiation input. This gives a requirement for a tip structure with delicate internal channels combined with thicker structure for load carrying and production reasons. It was found that the extension of the burner lifetime beyond the original design life could be accomplished by means of repair of the burner tip. Initially the tip repair has been done by conventional methods — i.e. cutting off the tip and replacing it with a premanufactured one. Due to the sophisticated internal structure of the burner the cuts have to be made fairly high upstream to avoid having the weld in the delicate channel area. Through the use of AM (Additive Manufacturing) technology it has been possible to simplify the repair and only replace the damaged part of the tip. Special processes have been developed for AM repair procedure, including: a) machining off of the damaged and oxidized tip, b) positioning the sintered model on the burner face, c) sintering a new tip in place, d) quality assurance and inspection methods, e) powder handling, f) material qualification including bonding zone, g) development of methods for mechanical integrity calculation, h) qualification of the whole repair process. This paper describes how we have developed and qualified SGT-800 and SGT-700 DLE burners repair with the help of additive manufacturing technology and our research work performed. In addition, this paper highlights the challenges we faced during design, materials qualification and repair work shop set-up.





Author(s):  
Olov Andersson ◽  
Andreas Graichen ◽  
Håkan Brodin ◽  
Vladimir Navrotsky

Low emission combustion is one of the most important requirements for industrial gas turbines. Siemens industrial gas turbines SGT-800 and SGT-700 use dry low emission (DLE) technology and are equipped with third generation of DLE burners. These burners demonstrate high-performance and reliable operation for the duration of their design lifetime. The design and shape of the burner tip is of great importance in order to achieve a good fuel/ air mixture and at the same time a resistance to the fatigue created by heat radiation input. This gives a requirement for a tip structure with delicate internal channels combined with thicker structure for load carrying and production reasons. It was found that the extension of the burner lifetime beyond the original design life could be accomplished by means of repair of the burner tip. Initially, the tip repair has been done by conventional methods— i.e., cutting off the tip and replacing it with a premanufactured one. Due to the sophisticated internal structure of the burner, the cuts have to be made fairly high upstream to avoid having the weld in the delicate channel area. Through the use of additive manufacturing (AM) technology, it has been possible to simplify the repair and only replace the damaged part of the tip. Special processes have been developed for AM repair procedure, including the following: machining off of the damaged and oxidized tip, positioning the sintered model on the burner face, sintering a new tip in place, quality assurance and inspection methods, powder handling, material qualification including bonding zone, development of methods for mechanical integrity calculation, and qualification of the whole repair process. This paper describes how we have developed and qualified SGT-800 and SGT-700 DLE burners repair with the help of additive manufacturing technology and our research work performed. In addition, this paper highlights the challenges we faced during design, materials qualification, and repair work shop set up.



Author(s):  
Justin Zachary

Industrial facilities are applications where the majority of electricity and steam productions are devoted to internal consumption rather than being exported. Oil refineries, smelters, and chemical and desalinization plants are typical examples. In the case of aluminum smelters, the vast quantities of electricity required by the process cannot be supplied by utilities from the grid and therefore cogeneration is required. Since power and/or steam supply interruptions might have catastrophic effects on the facility processes, the paramount requirement for “dedicated power plants’ is availability and reliability rather than high performance. It is common to find older D and E gas turbines used as the prime mover. In recent years, however, advanced gas turbines (GTs) successfully demonstrated close to 60% efficiency in combined cycle applications. The G and H technology classes, using steam to perform GT cooling duty, accumulated thousands of operating hours. Many improvements from G and H were also implemented into FX Class (latest variants of the air-cooled F technology class). Firstly, the paper addresses the strategies for incorporation of advanced GTs in captive applications where the equipment must cope with rapid changes in power demand, such as load swings, load rejection, harmonic currents, etc. Further, it examines a variety of designs, where there is a high and low process steam demand for process. The discussion encompasses plant optimization aiming at a high level of redundancy: multi-shaft arrangements, common steam headers, and heavy supplementary firing. The selection of an optimum steam turbine (ST) is also discussed, including steam extraction locations and the ability to operate efficiently with steam extraction on and off. Issues dealing with steam purity requirements and water treatment sizing will also be addressed. Since the amount and quality of the condensate return vary substantially, maintaining the water chemistry is essential. In continuation, the article will describe the challenges for the control system design and in particular, the requirements to maintain tight process conditions during transients. Finally, the paper will present the experience of an engineering, procurement, and construction (EPC) contractor for several “captive applications” projects.



Author(s):  
J. F. Louis

Two types of contra-rotating stages are considered; the first uses guide vanes and the second is vaneless. The wheels of the first type use bladings which are mirror images of each other and they operate with inlet and outlet swirl. The second type uses dissimilar bladings in each of the two wheels with axial inlet velocity to the first wheel and axial outlet velocity for the second wheel. An analysis of their performance indicates that both types can reach stage loading coefficients comparable or larger than conventional turbines with the same number of wheels. A comparison of the contra-rotating stages with conventional ones indicate a significant stage efficiency advantage of the contra-rotating over the conventional single rotation stages due mainly to the elimination of stationary vanes. The off-design performance indicates that relative wheel speed must be controlled. The attributes of contra-rotating turbines suggest their potential use in high performance aircraft engines, in dynamic space power systems and in low speed industrial gas turbines.



Author(s):  
Ole Geisen ◽  
Lisa Kersting ◽  
Lukas Masseling ◽  
Jan Pascal Bogner ◽  
Johannes Henrich Schleifenbaum

Laser-Powder Bed Fusion (L-PBF) is an additive manufacturing technique used to melt metal material into solid three-dimensional parts. While offering a high degree of design freedom, L-PBF still has technical restrictions, like the achievable surface roughness, resolution and the need for support structures in overhanging areas. [1] Currently, L-PBF is used mainly to produce small batches of parts and prototypes. [2] In order to fully industrialize the technology, the research campus in Aachen is investigating possible future applications in turbomachinery while developing the corresponding processes with industry partners. Sealing systems, like honeycomb seal strips in gas turbines often require time-consuming joining and assembly operations that can be avoided by building up the structure monolithically using L-PBF. The following process development study proves the feasibility of manufacturing honeycombs with L-PBF using the Nickel-based super-alloy Inconel 718 (IN718) on an EOS M290 machine. Here, we have evaluated the economic aspects of different build orientations of the seal strips. Afterwards, we conducted a systematic parameter study with continuous and pulsed wave laser emission and investigated the resulting wall thicknesses. A reduction in wall thickness of about 30% can be observed when a modulated laser is used.



Author(s):  
C.K. Wu ◽  
P. Chang ◽  
N. Godinho

Recently, the use of refractory metal silicides as low resistivity, high temperature and high oxidation resistance gate materials in large scale integrated circuits (LSI) has become an important approach in advanced MOS process development (1). This research is a systematic study on the structure and properties of molybdenum silicide thin film and its applicability to high performance LSI fabrication.



2020 ◽  
Author(s):  
James McDonagh ◽  
William Swope ◽  
Richard L. Anderson ◽  
Michael Johnston ◽  
David J. Bray

Digitization offers significant opportunities for the formulated product industry to transform the way it works and develop new methods of business. R&D is one area of operation that is challenging to take advantage of these technologies due to its high level of domain specialisation and creativity but the benefits could be significant. Recent developments of base level technologies such as artificial intelligence (AI)/machine learning (ML), robotics and high performance computing (HPC), to name a few, present disruptive and transformative technologies which could offer new insights, discovery methods and enhanced chemical control when combined in a digital ecosystem of connectivity, distributive services and decentralisation. At the fundamental level, research in these technologies has shown that new physical and chemical insights can be gained, which in turn can augment experimental R&D approaches through physics-based chemical simulation, data driven models and hybrid approaches. In all of these cases, high quality data is required to build and validate models in addition to the skills and expertise to exploit such methods. In this article we give an overview of some of the digital technology demonstrators we have developed for formulated product R&D. We discuss the challenges in building and deploying these demonstrators.<br>



Sign in / Sign up

Export Citation Format

Share Document