A method of redundant clocking detection and power reduction at RT level design

Author(s):  
M. Ohnishi ◽  
A. Yamada ◽  
H. Noda ◽  
T. Kambe
Keyword(s):  
2018 ◽  
Vol 6 (2) ◽  
pp. 1
Author(s):  
SEKHAR REDDY M. CHANDRA ◽  
REDDY P. RAMANA ◽  
◽  

Author(s):  
Sumit Saha ◽  
Arpit Singh ◽  
Maryam Shojaei Baghini ◽  
Mayank Goel ◽  
V. Ramgopal Rao
Keyword(s):  

Author(s):  
Ariel Jimenez ◽  
Natalia Morales ◽  
Carlos Paez ◽  
Arturo Fajardo ◽  
Gabriel Perilla

Electronics ◽  
2021 ◽  
Vol 10 (13) ◽  
pp. 1587
Author(s):  
Duo Sheng ◽  
Hsueh-Ru Lin ◽  
Li Tai

High performance and complex system-on-chip (SoC) design require a throughput and stable timing monitor to reduce the impacts of uncertain timing and implement the dynamic voltage and frequency scaling (DVFS) scheme for overall power reduction. This paper presents a multi-stage timing monitor, combining three timing-monitoring stages to achieve a high timing-monitoring resolution and a wide timing-monitoring range simultaneously. Additionally, because the proposed timing monitor has high immunity to the process–voltage–temperature (PVT) variation, it provides a more stable time-monitoring results. The time-monitoring resolution and range of the proposed timing monitor are 47 ps and 2.2 µs, respectively, and the maximum measurement error is 0.06%. Therefore, the proposed multi-stage timing monitor provides not only the timing information of the specified signals to maintain the functionality and performance of the SoC, but also makes the operation of the DVFS scheme more efficient and accurate in SoC design.


2014 ◽  
Vol 42 (4) ◽  
pp. 57-62
Author(s):  
Yuki Ando ◽  
Masataka Ogawa ◽  
Yuya Mizoguchi ◽  
Kouta Kumagai ◽  
Miaw Torng-Der ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document