Polarization dependence in polymer waveguide directional couplers

2005 ◽  
Vol 17 (7) ◽  
pp. 1465-1467 ◽  
Author(s):  
Sin Yip Cheng ◽  
Kin Seng Chiang ◽  
Hau Ping Chan
2005 ◽  
Vol 44 (7) ◽  
pp. 1156 ◽  
Author(s):  
Yong-Wook Shin ◽  
Ohannes Eknoyan ◽  
Henry F. Taylor

2002 ◽  
Vol 41 (1) ◽  
pp. 74 ◽  
Author(s):  
Donghua Gu ◽  
Ohannes Eknoyan ◽  
Henry F. Taylor

2011 ◽  
Vol E94-C (12) ◽  
pp. 1858-1860
Author(s):  
Soichi KOBAYASHI ◽  
Seigi OKI ◽  
Takahiro ISHIKURA ◽  
Keisuke KATO ◽  
Toshihiro SUDA
Keyword(s):  
Uv Laser ◽  

Polymers ◽  
2021 ◽  
Vol 13 (2) ◽  
pp. 195
Author(s):  
Muhammad Shaukat Khan ◽  
Hunain Farooq ◽  
Christopher Wittmund ◽  
Stephen Klimke ◽  
Roland Lachmayer ◽  
...  

We report on a polymer-waveguide-based temperature sensing system relying on switchable molecular complexes. The polymer waveguide cladding is fabricated using a maskless lithographic optical system and replicated onto polymer material (i.e., PMMA) using a hot embossing device. An iron-amino-triazole molecular complex material (i.e., [Fe(Htrz)2.85(NH2-trz)0.15](ClO4)2) is used to sense changes in ambient temperature. For this purpose, the core of the waveguide is filled with a mixture of core material (NOA68), and the molecular complex using doctor blading and UV curing is applied for solidification. The absorption spectrum of the molecular complex in the UV/VIS light range features two prominent absorption bands in the low-spin state. As temperature approaches room temperature, a spin-crossover transition occurs, and the molecular complex changes its color (i.e. spectral properties) from violet-pink to white. The measurement of the optical power transmitted through the waveguide as a function of temperature exhibits a memory effect with a hysteresis width of approx. 12 °C and sensitivity of 0.08 mW/°C. This enables optical rather than electronic temperature detection in environments where electromagnetic interference might influence the measurements.


Molecules ◽  
2021 ◽  
Vol 26 (1) ◽  
pp. 187
Author(s):  
Tianshun Li ◽  
Renxian Gao ◽  
Xiaolong Zhang ◽  
Yongjun Zhang

Changing the morphology of noble metal nanoparticles and polarization dependence of nanoparticles with different morphologies is an important part of further research on surface plasma enhancement. Therefore, we used the method based on Matlab simulation to provide a simple and effective method for preparing the morphologies of Au nanoparticles with different morphologies, and prepared the structure of Au nanoparticles with good uniformity and different morphologies by oblique angle deposition (OAD) technology. The change of the surface morphology of nanoparticles from spherical to square to diamond can be effectively controlled by changing the deposition angle. The finite difference time domain (FDTD) method was used to simulate the electromagnetic fields of Au nanoparticles with different morphologies to explore the polarization dependence of nanoparticles with different shapes, which was in good agreement with Raman spectrum.


2012 ◽  
Vol 37 (11) ◽  
pp. 2097 ◽  
Author(s):  
Rafael Gómez-Alcalá ◽  
F. Javier Fraile-Peláez ◽  
Pedro Chamorro-Posada ◽  
Francisco J. Díaz-Otero

Sign in / Sign up

Export Citation Format

Share Document