scholarly journals Online Gait Transitions and Disturbance Recovery for Legged Robots via the Feasible Impulse Set

2019 ◽  
Vol 4 (2) ◽  
pp. 1611-1618 ◽  
Author(s):  
Chiheb Boussema ◽  
Matthew J. Powell ◽  
Gerardo Bledt ◽  
Auke J. Ijspeert ◽  
Patrick M. Wensing ◽  
...  
2018 ◽  
Author(s):  
John M. Gier ◽  
Kenneth M. Kindel ◽  
Deborah S. Page-Dumroese ◽  
Louis J. Kuennen

Author(s):  
Jiayi Wang ◽  
Iordanis Chatzinikolaidis ◽  
Carlos Mastalli ◽  
Wouter Wolfslag ◽  
Guiyang Xin ◽  
...  

2006 ◽  
Vol 25 (9) ◽  
pp. 931-950 ◽  
Author(s):  
Hector Montes ◽  
Samir Nabulsi ◽  
Manuel A. Armada

Sensors ◽  
2020 ◽  
Vol 20 (17) ◽  
pp. 4911
Author(s):  
Qian Hao ◽  
Zhaoba Wang ◽  
Junzheng Wang ◽  
Guangrong Chen

Stability is a prerequisite for legged robots to execute tasks and traverse rough terrains. To guarantee the stability of quadruped locomotion and improve the terrain adaptability of quadruped robots, a stability-guaranteed and high terrain adaptability static gait for quadruped robots is addressed. Firstly, three chosen stability-guaranteed static gaits: intermittent gait 1&2 and coordinated gait are investigated. In addition, then the static gait: intermittent gait 1, which is with the biggest stability margin, is chosen to do a further research about quadruped robots walking on rough terrains. Secondly, a position/force based impedance control is employed to achieve a compliant behavior of quadruped robots on rough terrains. Thirdly, an exploratory gait planning method on uneven terrains with touch sensing and an attitude-position adjustment strategy with terrain estimation are proposed to improve the terrain adaptability of quadruped robots. Finally, the proposed methods are validated by simulations.


Author(s):  
Yue Zhao ◽  
Feng Gao ◽  
Qiao Sun ◽  
Yunpeng Yin

AbstractLegged robots have potential advantages in mobility compared with wheeled robots in outdoor environments. The knowledge of various ground properties and adaptive locomotion based on different surface materials plays an important role in improving the stability of legged robots. A terrain classification and adaptive locomotion method for a hexapod robot named Qingzhui is proposed in this paper. First, a force-based terrain classification method is suggested. Ground contact force is calculated by collecting joint torques and inertial measurement unit information. Ground substrates are classified with the feature vector extracted from the collected data using the support vector machine algorithm. Then, an adaptive locomotion on different ground properties is proposed. The dynamic alternating tripod trotting gait is developed to control the robot, and the parameters of active compliance control change with the terrain. Finally, the method is integrated on a hexapod robot and tested by real experiments. Our method is shown effective for the hexapod robot to walk on concrete, wood, grass, and foam. The strategies and experimental results can be a valuable reference for other legged robots applied in outdoor environments.


Sign in / Sign up

Export Citation Format

Share Document