Data Augmentation in Deep Learning-Based Fusion of Depth and Inertial Sensing for Action Recognition

2019 ◽  
Vol 3 (1) ◽  
pp. 1-4 ◽  
Author(s):  
Neha Dawar ◽  
Sarah Ostadabbas ◽  
Nasser Kehtarnavaz
Author(s):  
Shoumik Majumdar ◽  
Shubhangi Jain ◽  
Isidora Chara Tourni ◽  
Arsenii Mustafin ◽  
Diala Lteif ◽  
...  

Deep learning models perform remarkably well for the same task under the assumption that data is always coming from the same distribution. However, this is generally violated in practice, mainly due to the differences in the data acquisition techniques and the lack of information about the underlying source of new data. Domain Generalization targets the ability to generalize to test data of an unseen domain; while this problem is well-studied for images, such studies are significantly lacking in spatiotemporal visual content – videos and GIFs. This is due to (1) the challenging nature of misalignment of temporal features and the varying appearance/motion of actors and actions in different domains, and (2) spatiotemporal datasets being laborious to collect and annotate for multiple domains. We collect and present the first synthetic video dataset of Animated GIFs for domain generalization, Ani-GIFs, that is used to study domain gap of videos vs. GIFs, and animated vs. real GIFs, for the task of action recognition. We provide a training and testing setting for Ani-GIFs, and extend two domain generalization baseline approaches, based on data augmentation and explainability, to the spatiotemporal domain to catalyze research in this direction.


Sensors ◽  
2020 ◽  
Vol 20 (20) ◽  
pp. 5732
Author(s):  
Shih-Wei Sun ◽  
Bao-Yun Liu ◽  
Pao-Chi Chang

We propose a violin bowing action recognition system that can accurately recognize distinct bowing actions in classical violin performance. This system can recognize bowing actions by analyzing signals from a depth camera and from inertial sensors that are worn by a violinist. The contribution of this study is threefold: (1) a dataset comprising violin bowing actions was constructed from data captured by a depth camera and multiple inertial sensors; (2) data augmentation was achieved for depth-frame data through rotation in three-dimensional world coordinates and for inertial sensing data through yaw, pitch, and roll angle transformations; and, (3) bowing action classifiers were trained using different modalities, to compensate for the strengths and weaknesses of each modality, based on deep learning methods with a decision-level fusion process. In experiments, large external motions and subtle local motions produced from violin bow manipulations were both accurately recognized by the proposed system (average accuracy > 80%).


2020 ◽  
Author(s):  
Dean Sumner ◽  
Jiazhen He ◽  
Amol Thakkar ◽  
Ola Engkvist ◽  
Esben Jannik Bjerrum

<p>SMILES randomization, a form of data augmentation, has previously been shown to increase the performance of deep learning models compared to non-augmented baselines. Here, we propose a novel data augmentation method we call “Levenshtein augmentation” which considers local SMILES sub-sequence similarity between reactants and their respective products when creating training pairs. The performance of Levenshtein augmentation was tested using two state of the art models - transformer and sequence-to-sequence based recurrent neural networks with attention. Levenshtein augmentation demonstrated an increase performance over non-augmented, and conventionally SMILES randomization augmented data when used for training of baseline models. Furthermore, Levenshtein augmentation seemingly results in what we define as <i>attentional gain </i>– an enhancement in the pattern recognition capabilities of the underlying network to molecular motifs.</p>


2018 ◽  
Vol 6 (10) ◽  
pp. 323-328
Author(s):  
K.Kiruba . ◽  
D. Shiloah Elizabeth ◽  
C Sunil Retmin Raj

2020 ◽  
Vol 17 (3) ◽  
pp. 299-305 ◽  
Author(s):  
Riaz Ahmad ◽  
Saeeda Naz ◽  
Muhammad Afzal ◽  
Sheikh Rashid ◽  
Marcus Liwicki ◽  
...  

This paper presents a deep learning benchmark on a complex dataset known as KFUPM Handwritten Arabic TexT (KHATT). The KHATT data-set consists of complex patterns of handwritten Arabic text-lines. This paper contributes mainly in three aspects i.e., (1) pre-processing, (2) deep learning based approach, and (3) data-augmentation. The pre-processing step includes pruning of white extra spaces plus de-skewing the skewed text-lines. We deploy a deep learning approach based on Multi-Dimensional Long Short-Term Memory (MDLSTM) networks and Connectionist Temporal Classification (CTC). The MDLSTM has the advantage of scanning the Arabic text-lines in all directions (horizontal and vertical) to cover dots, diacritics, strokes and fine inflammation. The data-augmentation with a deep learning approach proves to achieve better and promising improvement in results by gaining 80.02% Character Recognition (CR) over 75.08% as baseline.


2019 ◽  
Vol 2019 ◽  
pp. 1-14 ◽  
Author(s):  
Yong He ◽  
Hong Zeng ◽  
Yangyang Fan ◽  
Shuaisheng Ji ◽  
Jianjian Wu

In this paper, we proposed an approach to detect oilseed rape pests based on deep learning, which improves the mean average precision (mAP) to 77.14%; the result increased by 9.7% with the original model. We adopt this model to mobile platform to let every farmer able to use this program, which will diagnose pests in real time and provide suggestions on pest controlling. We designed an oilseed rape pest imaging database with 12 typical oilseed rape pests and compared the performance of five models, SSD w/Inception is chosen as the optimal model. Moreover, for the purpose of the high mAP, we have used data augmentation (DA) and added a dropout layer. The experiments are performed on the Android application we developed, and the result shows that our approach surpasses the original model obviously and is helpful for integrated pest management. This application has improved environmental adaptability, response speed, and accuracy by contrast with the past works and has the advantage of low cost and simple operation, which are suitable for the pest monitoring mission of drones and Internet of Things (IoT).


2020 ◽  
Vol 6 (1) ◽  
Author(s):  
Malte Seemann ◽  
Lennart Bargsten ◽  
Alexander Schlaefer

AbstractDeep learning methods produce promising results when applied to a wide range of medical imaging tasks, including segmentation of artery lumen in computed tomography angiography (CTA) data. However, to perform sufficiently, neural networks have to be trained on large amounts of high quality annotated data. In the realm of medical imaging, annotations are not only quite scarce but also often not entirely reliable. To tackle both challenges, we developed a two-step approach for generating realistic synthetic CTA data for the purpose of data augmentation. In the first step moderately realistic images are generated in a purely numerical fashion. In the second step these images are improved by applying neural domain adaptation. We evaluated the impact of synthetic data on lumen segmentation via convolutional neural networks (CNNs) by comparing resulting performances. Improvements of up to 5% in terms of Dice coefficient and 20% for Hausdorff distance represent a proof of concept that the proposed augmentation procedure can be used to enhance deep learning-based segmentation for artery lumen in CTA images.


Sign in / Sign up

Export Citation Format

Share Document