An N-Way Single-Inductor High-Pass Power Divider for 5G Applications

Author(s):  
Aniello Franzese ◽  
Renato Negra ◽  
Andrea Malignaggi
Keyword(s):  
Author(s):  
Maryam Abata ◽  
Mahmoud Mehdi ◽  
Said Mazer ◽  
Moulhime El Bekkali ◽  
Catherine Algani

2010 ◽  
Vol E93-B (10) ◽  
pp. 2651-2654
Author(s):  
Morihiko NANJO ◽  
Kunio SAKAKIBARA ◽  
Nobuyoshi KIKUMA ◽  
Hiroshi HIRAYAMA
Keyword(s):  

2016 ◽  
Vol E99.C (12) ◽  
pp. 1327-1330 ◽  
Author(s):  
Dooheon YANG ◽  
Minyoung YOON ◽  
Sangwook NAM
Keyword(s):  

2000 ◽  
Vol 54 (11-12) ◽  
pp. 192-198
Author(s):  
Oleg Vasil'evich Trehovitskiy ◽  
Vladislav Vasil'evich Chaplinskiy
Keyword(s):  

2012 ◽  
Vol 37 (4) ◽  
pp. 447-454
Author(s):  
James W. Beauchamp

Abstract Source/filter models have frequently been used to model sound production of the vocal apparatus and musical instruments. Beginning in 1968, in an effort to measure the transfer function (i.e., transmission response or filter characteristic) of a trombone while being played by expert musicians, sound pressure signals from the mouthpiece and the trombone bell output were recorded in an anechoic room and then subjected to harmonic spectrum analysis. Output/input ratios of the signals’ harmonic amplitudes plotted vs. harmonic frequency then became points on the trombone’s transfer function. The first such recordings were made on analog 1/4 inch stereo magnetic tape. In 2000 digital recordings of trombone mouthpiece and anechoic output signals were made that provide a more accurate measurement of the trombone filter characteristic. Results show that the filter is a high-pass type with a cutoff frequency around 1000 Hz. Whereas the characteristic below cutoff is quite stable, above cutoff it is extremely variable, depending on level. In addition, measurements made using a swept-sine-wave system in 1972 verified the high-pass behavior, but they also showed a series of resonances whose minima correspond to the harmonic frequencies which occur under performance conditions. For frequencies below cutoff the two types of measurements corresponded well, but above cutoff there was a considerable difference. The general effect is that output harmonics above cutoff are greater than would be expected from linear filter theory, and this effect becomes stronger as input pressure increases. In the 1990s and early 2000s this nonlinear effect was verified by theory and measurements which showed that nonlinear propagation takes place in the trombone, causing a wave steepening effect at high amplitudes, thus increasing the relative strengths of the upper harmonics.


Author(s):  
Erna Verawati ◽  
Surya Darma Nasution ◽  
Imam Saputra

Sharpening the image of the road display requies a degree of brightness in the process of sharpening the image from the original image result of the improved image. One of the sharpening of the street view image is image processing. Image processing is one of the multimedia components that plays an important role as a form of visual information. There are many image processing methods that are used in sharpening the image of street views, one of them is the gram schmidt spectral sharpening method and high pass filtering. Gram schmidt spectral sharpening method is method that has another name for intensity modulation based on a refinement fillter. While the high pass filtering method is a filter process that btakes image with high intensity gradients and low intensity difference that will be reduced or discarded. Researce result show that the gram schmidt spectral sharpening method and high pass filtering can be implemented properly so that the sharpening of the street view image can be guaranteed sharpening by making changes frome the original image to the image using the gram schmidt spectral sharpening method and high pass filtering.Keywords: Image processing, gram schmidt spectral sharpening and high pass filtering.


2019 ◽  
Vol 39 (7) ◽  
pp. 473-480
Author(s):  
Qingchun Cao ◽  
Hui Liu ◽  
Li Gao

Sign in / Sign up

Export Citation Format

Share Document