Plant Cell Segmentation with Adaptive Thresholding

Author(s):  
Zhong Hoo Chau ◽  
Ishara Paranawithana ◽  
Liangjing Yang ◽  
U-Xuan Tan
2019 ◽  
Vol 128 ◽  
pp. 311-317 ◽  
Author(s):  
Wenbo Jiang ◽  
Lehui Wu ◽  
Shihui Liu ◽  
Min Liu

2018 ◽  
Author(s):  
Simon P. Shen ◽  
Hua-an Tseng ◽  
Kyle R. Hansen ◽  
Ruofan Wu ◽  
Howard Gritton ◽  
...  

AbstractAdvances in calcium imaging have made it possible to record from an increasingly larger number of neurons simultaneously. Neuroscientists can now routinely image hundreds to thousands of individual neurons. With the continued neurotechnology development effort, it is expected that millions of neurons could soon be simultaneously measured. An emerging technical challenge that parallels the advancement in imaging such a large number of individual neurons is the processing of correspondingly large datasets, an important step of which is the identification of individual neurons. Traditional methods rely mainly on manual or semi-manual inspection, which cannot be scaled to processing large datasets. To address this challenge, we have developed an automated cell segmentation method, which is referred to as Automated Cell Segmentation by Adaptive Thresholding (ACSAT). ACSAT includes an iterative procedure that automatically calculates global and local threshold values during each iteration based on image pixel intensities. As such, the algorithm is capable of handling morphological variations and dynamic changes in fluorescence intensities in different calcium imaging datasets. In addition, ACSAT computes adaptive threshold values based on a time-collapsed image that is representative of the image sequence, and thus ACSAT provides segmentation results at a fast speed. We tested the algorithm on wide-field calcium imaging datasets in the brain regions of hippocampus and striatum in mice. ACSAT achieved precision and recall rates of approximately 80% when compared to individual neurons that are verified by human inspection. Additionally, ACSAT successfully detected low-intensity neurons that were initially undetected by humans.SignificanceACSAT automatically segments cells in large scale wide-field calcium imaging datasets. It is based on adaptive thresholding at both global and local levels, implemented in an iterative process to identify individual neurons in a time-collapsed image from an image sequence. It is therefore capable of handling variation in cell morphology and dynamic changes between different calcium imaging datasets at a fast speed. Based on tests performed on two datasets from mouse hippocampus and striatum, ACSAT performed comparable to human referees and was even able to detect low-intensity neurons that were initially undetected by human referees.


eNeuro ◽  
2018 ◽  
Vol 5 (5) ◽  
pp. ENEURO.0056-18.2018 ◽  
Author(s):  
Simon P. Shen ◽  
Hua-an Tseng ◽  
Kyle R. Hansen ◽  
Ruofan Wu ◽  
Howard J. Gritton ◽  
...  

Author(s):  
Gunnel Karlsson ◽  
Jan-Olov Bovin ◽  
Michael Bosma

RuBisCO (D-ribulose-l,5-biphosphate carboxylase/oxygenase) is the most aboundant enzyme in the plant cell and it catalyses the key carboxylation reaction of photosynthetic carbon fixation, but also the competing oxygenase reaction of photorespiation. In vitro crystallized RuBisCO has been studied earlier but this investigation concerns in vivo existance of RuBisCO crystals in anthers and leaves ofsugarbeets. For the identification of in vivo protein crystals it is important to be able to determinethe unit cell of cytochemically identified crystals in the same image. In order to obtain the best combination of optimal contrast and resolution we have studied different staining and electron accelerating voltages. It is known that embedding and sectioning can cause deformation and obscure the unit cell parameters.


Author(s):  
Béatrice Satiat-Jeunemaitre ◽  
Chris Hawes

The comprehension of the molecular architecture of plant cell walls is one of the best examples in cell biology which illustrates how developments in microscopy have extended the frontiers of a topic. Indeed from the first electron microscope observation of cell walls it has become apparent that our understanding of wall structure has advanced hand in hand with improvements in the technology of specimen preparation for electron microscopy. Cell walls are sub-cellular compartments outside the peripheral plasma membrane, the construction of which depends on a complex cellular biosynthetic and secretory activity (1). They are composed of interwoven polymers, synthesised independently, which together perform a number of varied functions. Biochemical studies have provided us with much data on the varied molecular composition of plant cell walls. However, the detailed intermolecular relationships and the three dimensional arrangement of the polymers in situ remains a mystery. The difficulty in establishing a general molecular model for plant cell walls is also complicated by the vast diversity in wall composition among plant species.


2020 ◽  
pp. 68-72
Author(s):  
V.G. Nikitaev ◽  
A.N. Pronichev ◽  
V.V. Dmitrieva ◽  
E.V. Polyakov ◽  
A.D. Samsonova ◽  
...  

The issues of using of information and measurement systems based on processing of digital images of microscopic preparations for solving large-scale tasks of automating the diagnosis of acute leukemia are considered. The high density of leukocyte cells in the preparation (hypercellularity) is a feature of microscopic images of bone marrow preparations. It causes the proximity of cells to eachother and their contact with the formation of conglomerates. Measuring of the characteristics of bone marrow cells in such conditions leads to unacceptable errors (more than 50%). The work is devoted to segmentation of contiguous cells in images of bone marrow preparations. A method of cell separation during white blood cell segmentation on images of bone marrow preparations under conditions of hypercellularity of the preparation has been developed. The peculiarity of the proposed method is the use of an approach to segmentation of cell images based on the watershed method with markers. Key stages of the method: the formation of initial markers and builds the lines of watershed, a threshold binarization, shading inside the outline. The parameters of the separation of contiguous cells are determined. The experiment confirmed the effectiveness of the proposed method. The relative segmentation error was 5 %. The use of the proposed method in information and measurement systems of computer microscopy for automated analysis of bone marrow preparations will help to improve the accuracy of diagnosis of acute leukemia.


Sign in / Sign up

Export Citation Format

Share Document