On obtaining machine tool joints stiffness by integrated modal analysis

Author(s):  
Lei Guo ◽  
Hui Zhang ◽  
Peiqing Ye ◽  
Tong Zhao
Keyword(s):  
2014 ◽  
Vol 915-916 ◽  
pp. 31-34
Author(s):  
Qing Ping Zhang ◽  
Zheng Ru Wang ◽  
Yan Fang Wang

Vibration is one of the most important problems in laser cutting machine tool, which causes the manufacturing errors, also influences the machining accuracy of the parts. Modal analysis can calculate vibration type of structures. The paper presents how to use the powerful FEA software ANSYS to do the modal analysis on laser cutting machine tool and also studies the undamped free vibration on laser cutting machine tool. Finally, the test results and theoretical results were compared to verify the rationality of the modal, these provide theoretical base and conditions for dynamics analysis and optimal design.


1983 ◽  
Vol 105 (4) ◽  
pp. 282-287 ◽  
Author(s):  
K. F. Eman ◽  
K. J. Kim

The basic problem in modal analysis of machine tool structures is the extraction of modal parameters from the measured transfer function data. Conventionally this task is performed in two steps. The transfer function is determined using a Digital Fourier Analyzer followed by a suitable curve fitting procedure. In order to avoid the inherent problems associated with these procedures a new approach for modal analysis is proposed in this paper. Anticipating the stochastic nature of the systems excitation and response Modified Autoregressive Moving Average Vector models (MARMAV) are proposed. The modeling procedure yields a parametric representation of the structural behavior allowing the extraction of the modal information in one step, directly, rather than in two as in the conventional approaches. The mathematical foundation for the approach is given along with its application to a simulated three-degree-of-freedom system and a knee type milling machine. The newly proposed procedure is commensurate to the existing ones in light of the computational efforts involved; however, it eliminates the subjective judgment of the analyst since the modeling procedure is based on rigorous statistical adequacy checks. Finally, the proposed approach is amenable for implementation in a computer-based machine tool structural dynamics analyzer.


2011 ◽  
Vol 314-316 ◽  
pp. 1981-1986 ◽  
Author(s):  
Qing Ke Yuan ◽  
Ya Nan Du ◽  
Yao Ding ◽  
Tong Le Wang

Ball screw is an important part in the machine tool feeding system. This paper researches on the ball screw, establishes the 3D virtual numerical model by Pro/engineer. Modal analysis of ball screw is carried out in three different cases by ANSYS, then gets the intrinsic frequency and vibration model of ball screw. It provides reliable reference for further structure analysis of ball screw.


2019 ◽  
Vol 295 ◽  
pp. 67-72
Author(s):  
Zhong Peng Zheng ◽  
Xin Yang Jiang ◽  
Xin Jin

In order to improve the dynamic stability of precision micro slitting turn-milling machine tools, reduce or avoid the vibration problem during the cutting process, optimize the machine structure and processing parameters, the modal analysis of precision micro slitting turn-milling machine tool based on hammer experimental method was researched. In this paper, by analyzing the mechanism of precision micro slitting turn-milling machine tools, the multi degree-of-freedom mathematical vibration model of precision slitting turn-milling machine tools is constructed. The precision micro turn-milling machine tool is analyzed based on the hammer experiment analysis. The modal analysis obtained the first five natural frequencies and resonance speeds of the precision micro slitting turn-milling machine tool,including ST26, NN-25UB8K2 and NN-20UB87. The research results show that hammer experimental method can evaluate the vibration modal analysis of precision micro slitting turn-milling machine tools to some extent. The experimental modal analysis results guide and optimize the structural design and processing technology of precision micro slitting turn-milling machine tools.


2010 ◽  
Vol 118-120 ◽  
pp. 972-976 ◽  
Author(s):  
Suo Xian Yuan ◽  
Xue Long Wen ◽  
Yao Man Zhang

Modal analysis for the truss structures of machine tool is very important. based on ANSYS, according to the truss structures of machine tool, the modal analysis is carried out in this paper. Afterwards, the first ten natural frequency, corresponding mode shape is obtained. By means of animation, ten-order modal vibration rule has been analyzed. The modal analysis is made by ANSYS11.0. It provides the theory for the design and application of truss structures.


2014 ◽  
Vol 800-801 ◽  
pp. 408-413
Author(s):  
Lu Ning Liu ◽  
Zhen Yu Shi ◽  
Zhan Qiang Liu ◽  
Hao Song

This paper adopts composite structure system analysis method to perform modal analysis of high-speed face milling cutter which is mounted on the machine tool through FEM modal analysis. The key problem of this method is to obtain joint surface parameters between the machine tool spindle and face milling cutter through experimental modal analysis and MATLAB software. The joint surface parameters consist of linear stiffness, linear damping, rotation stiffness and rotation damping. After getting the frequency response function (FRF) at the tool tip of the face milling system through experimental modal analysis, the contact surface parameters can be used to eliminate the influence of the machine tool to get modal parameters of the face-milling cutter itself. Based on the finite element model of face milling cutter, composite structure system analysis method can be used easily to acquire the dynamic performance of the face milling system through FEM modal analysis, greatly to improve the reliability of modal analysis, and is helpful to the dynamic design and the structure improvement of high speed face milling cutter.


Sign in / Sign up

Export Citation Format

Share Document