The cables behavior of long-span suspension bridge with CFRP cable system during erection

Author(s):  
Zheng Hong-yu ◽  
Teng Jian-zhi ◽  
Lu Zhi-tao
2013 ◽  
Vol 694-697 ◽  
pp. 476-480
Author(s):  
Hai Qing Zhu ◽  
Xie Dong Zhang

The type of suspension bridge is used all over the world because of its long span. But the cable system which forced the main load is vulnerable to damage and corrosion. In order to discuss the dynamic characteristics of typical long-span suspension bridges, a finite-element model of a typical long-span bridge was set up with ANSYS, and its top ten frequencies and vibration types were calculated. What’s more the dynamic characteristics under the variations such as modulus of elasticity, sectional size of the cable system, initial strain of the cable, as well as the deficiency of suspender cable were discussed. According to the analysis, the researchers got the conclusion that how the cable system impacts the whole bridge and which suspender cable plays the most significant role. Moreover, the results could serve as some valuable references for the optimization design and preservation of long-span suspension bridges.


2019 ◽  
Vol 2019 ◽  
pp. 1-9
Author(s):  
Zhifang Lu ◽  
Chaofan Wei ◽  
Muyu Liu ◽  
Xiaoguang Deng

Cable system construction is one of the most risky construction stages of long-span suspension bridges, and a reliable risk assessment is an important means to ensure the construction safety. This study proposes a risk assessment method for cable system construction of suspension bridges based on the cloud model, which can combine randomness and fuzziness of risk information effectively. First, a multilevel evaluation index system is built by disassembling the process of cable system construction. Next, the index weights are calculated by the uncertain analytic hierarchy process (AHP). Then, according to the cloud model, a risk assessment model for cable system construction of the suspension bridge is established by realizing the mutual transformation between qualitative language and quantified data. Finally, an illustrative example concerning the risk of cable system construction of Wuhan Yang-Si-Gang Yangtze River Bridge is provided to demonstrate the feasibility and objectivity of the proposed method.


2006 ◽  
Vol 11 (3) ◽  
pp. 293-318 ◽  
Author(s):  
M. Zribi ◽  
N. B. Almutairi ◽  
M. Abdel-Rohman

The flexibility and low damping of the long span suspended cables in suspension bridges makes them prone to vibrations due to wind and moving loads which affect the dynamic responses of the suspended cables and the bridge deck. This paper investigates the control of vibrations of a suspension bridge due to a vertical load moving on the bridge deck with a constant speed. A vertical cable between the bridge deck and the suspended cables is used to install a hydraulic actuator able to generate an active control force on the bridge deck. Two control schemes are proposed to generate the control force needed to reduce the vertical vibrations in the suspended cables and in the bridge deck. The proposed controllers, whose design is based on Lyapunov theory, guarantee the asymptotic stability of the system. The MATLAB software is used to simulate the performance of the controlled system. The simulation results indicate that the proposed controllers work well. In addition, the performance of the system with the proposed controllers is compared to the performance of the system controlled with a velocity feedback controller.


2021 ◽  
Vol 25 (3) ◽  
pp. 854-865
Author(s):  
Hao Wang ◽  
Zidong Xu ◽  
Min Yang ◽  
Tianyou Tao ◽  
Jianxiao Mao ◽  
...  

2016 ◽  
Vol 858 ◽  
pp. 157-162 ◽  
Author(s):  
Hao Lei Wang ◽  
Feng Jie Ma ◽  
Chao Zhu

In order to break through the limitation of the width of river, depth of water, channel and etc., it is an optimal choice to construct a long-span suspension bridge. In a suspension bridge, the main cable is the major bearing member; and the use of super high strength cable wire can lighten the dead weight and obtain an economical design. 1960 Mpa cable wire is adopted by an under-construction suspension bridge, namely Ni-Zhou Channel Bridge, for the first time in China. In this paper, taking the Ni-Zhou Channel Bridge as a case-study, comparative analyses on dynamic characteristic and seismic response of long-span suspension bridge with 1960 Mpa cable wire are performed. Firstly, dynamic calculating model for Ni-Zhou Channel Bridge is built and its dynamic characteristics are studied; then by using response spectrum and time history analysis method, seismic response of Ni-Zhou Channel Bridge is investigated on the basis of design response spectrum and artificial seismic ground motions; finally, the energy dissipation performances of a seismic protection devices (viscous damper) are also discussed. The results show that long-span suspension bridge with 1960 Mpa cable wire has a longer natural vibration period; the use of viscous damper can effectively reduce the peak value of bending moment in stiffening girder. This paper can provide references for the project’s construction.


Sign in / Sign up

Export Citation Format

Share Document