Study on Dynamic Characteristic and Seismic Response of Long-Span Suspension Bridge with 1960 MPa Cable Wire

2016 ◽  
Vol 858 ◽  
pp. 157-162 ◽  
Author(s):  
Hao Lei Wang ◽  
Feng Jie Ma ◽  
Chao Zhu

In order to break through the limitation of the width of river, depth of water, channel and etc., it is an optimal choice to construct a long-span suspension bridge. In a suspension bridge, the main cable is the major bearing member; and the use of super high strength cable wire can lighten the dead weight and obtain an economical design. 1960 Mpa cable wire is adopted by an under-construction suspension bridge, namely Ni-Zhou Channel Bridge, for the first time in China. In this paper, taking the Ni-Zhou Channel Bridge as a case-study, comparative analyses on dynamic characteristic and seismic response of long-span suspension bridge with 1960 Mpa cable wire are performed. Firstly, dynamic calculating model for Ni-Zhou Channel Bridge is built and its dynamic characteristics are studied; then by using response spectrum and time history analysis method, seismic response of Ni-Zhou Channel Bridge is investigated on the basis of design response spectrum and artificial seismic ground motions; finally, the energy dissipation performances of a seismic protection devices (viscous damper) are also discussed. The results show that long-span suspension bridge with 1960 Mpa cable wire has a longer natural vibration period; the use of viscous damper can effectively reduce the peak value of bending moment in stiffening girder. This paper can provide references for the project’s construction.

2011 ◽  
Vol 255-260 ◽  
pp. 962-966
Author(s):  
Fan Xing ◽  
Lin Zhao ◽  
Ya Zhe Xing

In view of huge destructibility of the near-fault ground motions, structures with long natural vibration period are liable to fall into nonlinear reaction stage. Based on a full understanding of the near-fault seismic spectrum characteristics, the out-of-plane seismic response of a long span concrete-filled steel tube (CFST) arch bridge was studied in depth, and the research result could offer a reference for near-fault aseismic design.


Author(s):  
Deepshikha Nair ◽  
Yuki Terazawa ◽  
Ben Sitler ◽  
Toru Takeuchi

This paper investigates the seismic response characteristics of long-span domes. The natural periods of the prominent modes are longer than medium-span domes, which leads to a greater contribution from the higher modes to the response of the long-span dome. The acceleration distributions, particularly the vertical acceleration distributions are sensitive to the dominant mode shapes of these higher modes. This leads to inaccuracies when applying the previously proposed response evaluation methods. The vibration modes of multi-storey supporting substructures also affect the excited vibration modes of the roof. In this paper, the dynamic characteristics and seismic response of 150m-span domes supported by multi-storey substructures are studied. The effects of the post- yield stiffness of multi-storey substructures are also analysed by considering two structural systems, buckling- restrained braced frames (BRBF) and damped spine frames. A simple design procedure to evaluate the equivalent static loads using amplification factors and incorporating the effects of higher modes is proposed based on response spectrum analysis and equivalent linearisation procedures. The accuracy of the proposed method is evaluated by comparing the responses with those obtained from non-linear response history analysis.


2012 ◽  
Vol 5 ◽  
pp. 183-188
Author(s):  
Lian Zhen Zhang ◽  
Tian Liang Chen

Self-anchored suspension bridge is widely used in Chinese City bridge engineering for the past few years. Because the anchorage system of main cable has been changed from anchorage blocks to the ends of the girder, its’ dynamic mechanics behavior is greatly distinguished with the traditional earth anchored suspension bridge. This paper studies the dynamic characteristics and seismic response of one large-span self-anchored suspension bridge which is located in China/Shenyang city. Using a spatial dynamic analysis finite element mode, the dynamic characteristics are calculated out. An artificial seismic wave is adopted as the ground motion input which is fitted with acceleration response spectrum according to the Chinese bridge anti-seismic design code. Time-integration method is used to get the seismic time-history response. Geometry nonlinear effect is considered during the time-history analysis. At last, the dynamic characteristics and the behavior of earthquake response of this type bridge structure are discussed clearly. The research results can be used as the reference of seismic response analysis and anti-seismic design for the same type of bridge.


2020 ◽  
Vol 57 (11) ◽  
pp. 1639-1651
Author(s):  
Juan-Carlos Carvajal ◽  
William D. Liam Finn ◽  
Carlos Estuardo Ventura

A single degree of freedom model is presented for calculating the free-field seismic response of bridge embankments due to horizontal ground shaking using equivalent linear analysis and a design response spectrum. The shear wave velocity profile, base flexibility, 2D shape, and damping ratio of the embankment are accounted for in the model. A step-by-step procedure is presented for calculating the effective cyclic shear strain of the embankment, equivalent homogeneous shear modulus and damping ratio, fundamental period of vibration, peak crest acceleration, peak shear stress profile, peak shear strain profile, equivalent linear shear modulus profile, and peak relative displacement profile. Model calibration and verification of the proposed procedure is carried out with linear, equivalent linear, and nonlinear finite element analysis for embankments with fundamental periods of vibration between 0.1 and 1.0 s. The proposed model is simple, rational, and suitable for practical implementation using spreadsheets for a preliminary design phase of bridge embankments.


2014 ◽  
Vol 501-504 ◽  
pp. 1364-1367
Author(s):  
Yong Zhe Niu ◽  
Wen Jie Guo ◽  
Guang Ling Li ◽  
Rui Xin Sun

Anti-seismic property was essential in the progress of bridge designing and construction due to destructive power of earthquake disaster and increasing span of bridge. This paper elaborated theory method of analysis, taking five spans continuous cable-stayed bridge which was half floating system as an engineering background, and using method of special finite element analysis to calculating dynamic characteristics and seismic response respectively which also considered longitudinal limit damping and stiffness of cable under longitudinal, transverse, vertical and three-dimensional seismic oscillation. Fundamental frequency of cable-stayed bridge was affected significantly with considering longitudinal limit damping, so connection measures would be determined reasonably in designing and analyzing anti-seismic property of long-span cable-stayed bridge. When response spectrum analysis was adopted, longitudinal and vertical displacement were larger than lateral displacement under longitudinal seismic oscillation, lateral seismic oscillation only affected the structural lateral displacement, and vertical seismic oscillation affected vertical and longitudinal displacement.


2012 ◽  
Vol 178-181 ◽  
pp. 2497-2500
Author(s):  
Jing Cao

This article sets up two structural calculation models utilizing lumped mass method, and using MIDAS software: model A and model B. It proves that considering soil-pile-structure interaction has extremely vital significance in seismic response design of long-span cable-stayed bridge.


2010 ◽  
Vol 163-167 ◽  
pp. 3964-3971
Author(s):  
Zhen Xuan Zhang ◽  
Qing Jun Chen

Based on seismic records with large long-period components at home and abroad, carried on uniform error correction processing and rough site classification, then, used numerical analysis software-MATLAB to calculate the average response spectrum of different types of venues, and used the least square method to do sub-fitting for them, got the long-period quasi-regulatory response spectrums of all kinds of venues; using the general-purpose finite element analysis software-ANSYS, a super high-rise building structural analysis model was established, inputted the fitted long-period seismic response spectrum and the design response spectrum of Shanghai anti-seismic standards, by comparing the results of structural seismic responeses under the two kinds of response spectrum, the long-period seismic response of super high-rise building was investigated, and some valuable conclusions were obtained for reference.


2013 ◽  
Vol 791-793 ◽  
pp. 370-373
Author(s):  
Hua Bai ◽  
Yue Zhang

In order to solve the problem of traditional buffeting analysis method is complex, the paper summarizes a calculation method of simplifying the suspension bridge buffeting response spectrum which considers the background response by simplifying the vibration mode function. Examples calculation shows that this function is efficient and accurate. With this method the paper analyzes the impact of parameters including structural damping ratio, aerodynamic admittance function, pneumatic self-excited forces, the main beam span and so on on the suspension bridge buffeting response. Results show that: First, the impact of the background response on concrete bridges with larger damping ratio cannot be ignored. Second, when aerodynamic admittance takes Sears function, the buffeting response analysis results may be partial dangerous. Third, the role of the background response on large long-span bridges of more than 2000 m can be ignored.


Sign in / Sign up

Export Citation Format

Share Document