Degrees of Freedom and Maximum Directivity of Antennas: A bound on maximum directivity of nonsuperreactive antennas.

2017 ◽  
Vol 59 (4) ◽  
pp. 16-25 ◽  
Author(s):  
Per-Simon Kildal ◽  
Enrica Martini ◽  
Stefano Maci
1966 ◽  
Vol 25 ◽  
pp. 373
Author(s):  
Y. Kozai

The motion of an artificial satellite around the Moon is much more complicated than that around the Earth, since the shape of the Moon is a triaxial ellipsoid and the effect of the Earth on the motion is very important even for a very close satellite.The differential equations of motion of the satellite are written in canonical form of three degrees of freedom with time depending Hamiltonian. By eliminating short-periodic terms depending on the mean longitude of the satellite and by assuming that the Earth is moving on the lunar equator, however, the equations are reduced to those of two degrees of freedom with an energy integral.Since the mean motion of the Earth around the Moon is more rapid than the secular motion of the argument of pericentre of the satellite by a factor of one order, the terms depending on the longitude of the Earth can be eliminated, and the degree of freedom is reduced to one.Then the motion can be discussed by drawing equi-energy curves in two-dimensional space. According to these figures satellites with high inclination have large possibilities of falling down to the lunar surface even if the initial eccentricities are very small.The principal properties of the motion are not changed even if plausible values ofJ3andJ4of the Moon are included.This paper has been published in Publ. astr. Soc.Japan15, 301, 1963.


2020 ◽  
Vol 43 ◽  
Author(s):  
David Spurrett

Abstract Comprehensive accounts of resource-rational attempts to maximise utility shouldn't ignore the demands of constructing utility representations. This can be onerous when, as in humans, there are many rewarding modalities. Another thing best not ignored is the processing demands of making functional activity out of the many degrees of freedom of a body. The target article is almost silent on both.


2016 ◽  
Vol 23 (4) ◽  
pp. 131-140 ◽  
Author(s):  
Philip Furley ◽  
Karsten Schul ◽  
Daniel Memmert
Keyword(s):  

Zusammenfassung. Das Ziel des vorliegenden Beitrages ist es anhand eines vielverwendeten Paradigmas in der Sportwissenschaft – dem Experten-Novizen-Vergleich – zu prüfen, ob die momentane Vertrauenskrise in der Psychologie ebenfalls die Sportpsychologie betreffen könnte. Anhand einer exemplarischen Studie zeigen wir, dass es innerhalb dieses Paradigmas zu kontroversen Befunden kommt, welche durch die vermuteten Ursachen der Vertrauenskrise (Researcher Degrees of Freedom, kleine Stichprobengrößen) erklärt sein könnten. Zusätzlich argumentieren wir, dass weitere Faktoren (Konfundierung, Stichprobengrößen, Rosenthal Effekt, Expertise-Definition) innerhalb dieses Paradigmas die Reproduzierbarkeit von Erkenntnissen in Frage stellen. Wir diskutieren mögliche Maßnahmen, wie die dargestellten Probleme des Experten-Novizen-Paradigmas in zukünftigen Forschungsarbeiten gelöst werden können.


1996 ◽  
Vol 09 (04) ◽  
pp. 165-171 ◽  
Author(s):  
D. A. Hulse ◽  
M. R. Slater ◽  
J. F. Hunter ◽  
W. A. Hyman ◽  
B. A. Shelley

SummaryA test apparatus that allowed the stifle to move in five degrees of freedom was used to determine the effect of graft location, graft preload, and flexion angle at the time of graft fixation on the tensile graft forces experienced by a replacement graft material used to simulate reconstruction of the cranial cruciate ligament deficient stifle. Two graft locations (tibial insertion site of the patellar ligament and tibial insertion site of the cranial cruciate ligament), two graft preloads (5 N and 20 N), and three flexion angles at the time of graft fixation (15°, 30° and 90°) were examined. The tibial insertion site and preload did not have as great an effect on graft force as did the flexion angle of the limb at time of graft fixation. Graft forces were highest when reconstructions were performed with the limb in 90° of flexion (ρ <0.0001). This study supports the notion that intracapsular grafts should be fixed with the limb in a normal standing angle.A five degree of freedom test apparatus was used to evaluate the effect of graft location, graft preload, and limb flexion angle at time of graft fixation on reconstructions of the cranial cruciate ligament deficient stifle. Our results suggest that intracapsular grafts should not be fixed with the limb in 90° of flexion, but in a normal standing angle.


2019 ◽  
Vol 13 (3) ◽  
pp. 5334-5346
Author(s):  
M. N. Nguyen ◽  
L. Q. Nguyen ◽  
H. M. Chu ◽  
H. N. Vu

In this paper, we report on a SOI-based comb capacitive-type accelerometer that senses acceleration in two lateral directions. The structure of the accelerometer was designed using a proof mass connected by four folded-beam springs, which are compliant to inertial displacement causing by attached acceleration in the two lateral directions. At the same time, the folded-beam springs enabled to suppress cross-talk causing by mechanical coupling from parasitic vibration modes. The differential capacitor sense structure was employed to eliminate common mode effects. The design of gap between comb fingers was also analyzed to find an optimally sensing comb electrode structure. The design of the accelerometer was carried out using the finite element analysis. The fabrication of the device was based on SOI-micromachining. The characteristics of the accelerometer have been investigated by a fully differential capacitive bridge interface using a sub-fF switched-capacitor integrator circuit. The sensitivities of the accelerometer in the two lateral directions were determined to be 6 and 5.5 fF/g, respectively. The cross-axis sensitivities of the accelerometer were less than 5%, which shows that the accelerometer can be used for measuring precisely acceleration in the two lateral directions. The accelerometer operates linearly in the range of investigated acceleration from 0 to 4g. The proposed accelerometer is expected for low-g applications.


Sign in / Sign up

Export Citation Format

Share Document