Modeling and validation of a magnetic actuator based rectangular permanent magnets

Author(s):  
Walid Amokrane ◽  
Karim Belharet ◽  
Mouna Souissi ◽  
Antoine Ferreira
2018 ◽  
Vol 54 (7) ◽  
pp. 1-6 ◽  
Author(s):  
Jaejoon Lee ◽  
Seung-Wook Lee ◽  
Kyungmok Kim ◽  
Jaewook Lee

2014 ◽  
Vol 2014 ◽  
pp. 1-6 ◽  
Author(s):  
H. Yaguchi ◽  
S. Sakuma ◽  
T. Kato

This paper proposes a new type of a magnetic actuator that operates on a resonance energy of a mass-spring model by using an electromagnetic force. The magnetic actuator is moved by the difference in an inertia force during one period of vibration. Experimental result demonstrates that a horizontal speed of the magnetic actuator was 7.4 mm/s with load mass of 50 g. We considered a method of a cable-free movement of the actuator by using two iron rails and four permanent magnets. The magnetic actuator is able to move stably a ceiling plane and a wall plane. This actuator is able to move on the plane of the magnetic materials only a function generator and a power amplifier.


2015 ◽  
Vol 5 (2) ◽  
pp. 37
Author(s):  
Tomohiro Izumikawa ◽  
Ryuichi Watanabe ◽  
Hiroyuki Yaguchi

<p class="1Body">This paper proposes a cableless In-piping magnetic actuator capable of locomotion over long range of 1,000 m within a pipe having an inner diameter of 10 mm. The cableless magnetic actuator is moved by using resonance energy of a mass-spring system excited by using an electromagnetic force. The proposed actuator incorporates a new type of an electrical inverter that directly transforms DC from button batteries into AC. The electrical DC-AC inverter incorporates a mass-spring system, two reed switches and two curved permanent magnets that switch under an electromagnetic force. The conventional DC-AC inverter and the newly proposed inverter were compared, and the effect of the inverter on the motive properties of the cableless magnetic actuator was examined. The influence of the consumption current of the battery on the range of the actuator was examined. Experimental result demonstrates that the cableless magnetic actuator was able to move horizontally at 1,588 m, and horizontal speed at 176.5 mm/s when two reed switches were used.</p>


Author(s):  
Raja K. Mishra

The discovery of a new class of permanent magnets based on Nd2Fe14B phase in the last decade has led to intense research and development efforts aimed at commercial exploitation of the new alloy. The material can be prepared either by rapid solidification or by powder metallurgy techniques and the resulting microstructures are very different. This paper details the microstructure of Nd-Fe-B magnets produced by melt-spinning.In melt spinning, quench rate can be varied easily by changing the rate of rotation of the quench wheel. There is an optimum quench rate when the material shows maximum magnetic hardening. For faster or slower quench rates, both coercivity and maximum energy product of the material fall off. These results can be directly related to the changes in the microstructure of the melt-spun ribbon as a function of quench rate. Figure 1 shows the microstructure of (a) an overquenched and (b) an optimally quenched ribbon. In Fig. 1(a), the material is nearly amorphous, with small nuclei of Nd2Fe14B grains visible and in Fig. 1(b) the microstructure consists of equiaxed Nd2Fe14B grains surrounded by a thin noncrystalline Nd-rich phase. Fig. 1(c) shows an annular dark field image of the intergranular phase. Nd enrichment in this phase is shown in the EDX spectra in Fig. 2.


Author(s):  
Mahesh Chandramouli

Magnetization reversal in sintered Fe-Nd-B, a complex, multiphase material, occurs by nucleation and growth of reverse domains making the isolation of the ferromagnetic Fe14Nd2B grains by other nonmagnetic phases crucial. The magnets used in this study were slightly rich in Nd (in comparison to Fe14Nd2B) to promote the formation of Nd-oxides at multigrain junctions and incorporated Dy80Al20 as a liquid phase sintering addition. Dy has been shown to increase the domain wall energy thus making nucleation more difficult while Al is thought to improve the wettability of the Nd-oxide phases.Bulk polished samples were examined in a JEOL 35CF scanning electron microscope (SEM) operated at 30keV equipped with a Be window energy dispersive spectrometer (EDS) detector in order to determine the phase distribution.


Author(s):  
W. Coene ◽  
F. Hakkens ◽  
T.H. Jacobs ◽  
K.H.J. Buschow

Intermetallic compounds of the type RE2Fe17Cx (RE= rare earth element) are promising candidates for permanent magnets. In case of Y2Fe17Cx, the Curie temperature increases from 325 K for x =0 to 550 K for x = 1.6 . X ray and electron diffraction reveal a carbon - induced structural transformation in Y2Fe17Cx from the hexagonal Th2Ni17 - type (x < 0.6 ) to the rhombohedral Th2Zn17 - type ( x ≥ 0.6). Planar crystal defects introduce local sheets of different magnetic anisotropy as compared with the ordered structure, and therefore may have an important impact on the coercivivity mechanism .High resolution electron microscopy ( HREM ) on a Philips CM30 / Super Twin has been used to characterize planar crystal defects in rhombohedral Y2Fe17Cx ( x ≥ 0.6 ). The basal plane stacking sequences are imaged in the [100] - orientation, showing an ABC or ACB sequence of Y - atoms and Fe2 - dumbbells, for both coaxial twin variants, respectively . Compounds resulting from a 3 - week annealing treatment at high temperature ( Ta = 1000 - 1100°C ) contain a high density of planar defects.


1977 ◽  
Vol 38 (C1) ◽  
pp. C1-333-C1-336 ◽  
Author(s):  
P. CAVALLOTTI ◽  
R. ROBERTI ◽  
G. CAIRONI ◽  
G. ASTI

1988 ◽  
Vol 49 (C8) ◽  
pp. C8-573-C8-574
Author(s):  
G. F. Zhou ◽  
X. K. Sun ◽  
Y. C. Chuang ◽  
L. Gao ◽  
Z. Yu ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document