Detecting Influential Spreaders in Complex, Dynamic Networks

Computer ◽  
2013 ◽  
Vol 46 (4) ◽  
pp. 24-29 ◽  
Author(s):  
Pavlos Basaras ◽  
Dimitrios Katsaros ◽  
Leandros Tassiulas
Complexity ◽  
2019 ◽  
Vol 2019 ◽  
pp. 1-14 ◽  
Author(s):  
Yiping Luo ◽  
Yuejie Yao

The finite-time synchronization control is studied in this paper for a class of nonlinear uncertain complex dynamic networks. The uncertainties in the network are unknown but bounded and satisfy some matching conditions. The coupling relationship between network nodes is described by a nonlinear function satisfying the Lipchitz condition. By introducing a simple Lyapunov function, two main results regarding finite-time synchronization of a class of complex dynamic networks with parameter uncertainties are derived. By employing some analysis techniques like matrix inequalities, suitable controllers can be designed based on the obtained synchronization criteria. Moreover, with the obtained control input, the time instant required for the system to achieve finite-time synchronization can be estimated if a set of LMIs are feasible or an assumption on the eigenvalues of some matrices can be satisfied. Finally, the effectiveness of the proposed results is verified by numerical simulation.


2009 ◽  
Vol 3 (4) ◽  
pp. 266-278 ◽  
Author(s):  
G.S. Thakur ◽  
A.W.M. Dress ◽  
R. Tiwari ◽  
S.-S. Chen ◽  
M.T. Thai

PLoS ONE ◽  
2014 ◽  
Vol 9 (2) ◽  
pp. e86891 ◽  
Author(s):  
Rodica Ioana Lung ◽  
Camelia Chira ◽  
Anca Andreica

2021 ◽  
Vol 11 ◽  
Author(s):  
Dominik Kahl ◽  
Maik Kschischo

Mathematical modeling is seen as a key step to understand, predict, and control the temporal dynamics of interacting systems in such diverse areas like physics, biology, medicine, and economics. However, for large and complex systems we usually have only partial knowledge about the network, the coupling functions, and the interactions with the environment governing the dynamic behavior. This incomplete knowledge induces structural model errors which can in turn be the cause of erroneous model predictions or misguided interpretations. Uncovering the location of such structural model errors in large networks can be a daunting task for a modeler. Here, we present a data driven method to search for structural model errors and to confine their position in large and complex dynamic networks. We introduce a coherence measure for pairs of network nodes, which indicates, how difficult it is to distinguish these nodes as sources of an error. By clustering network nodes into coherence groups and inferring the cluster inputs we can decide, which cluster is affected by an error. We demonstrate the utility of our method for the C. elegans neural network, for a signal transduction model for UV-B light induced morphogenesis and for synthetic examples.


Sign in / Sign up

Export Citation Format

Share Document