Non-invasive measurements based model predictive control of pulsatile flow in an implantable rotary blood pump for heart failure patients

Author(s):  
Abdul-Hakeem H. AlOmari ◽  
Faizan Javed ◽  
Andrey V. Savkin ◽  
Einly Lim ◽  
Robert F. Salamonsen ◽  
...  
2011 ◽  
Vol 35 (8) ◽  
pp. E174-E180 ◽  
Author(s):  
Einly Lim ◽  
Abdul-Hakeem H. Alomari ◽  
Andrey V. Savkin ◽  
Socrates Dokos ◽  
John F. Fraser ◽  
...  

2010 ◽  
Vol 46 (7) ◽  
pp. 481 ◽  
Author(s):  
A.H. Alomari ◽  
A.V. Savkin ◽  
P.J. Ayre ◽  
E. Lim ◽  
N.H. Lovell

Circulation ◽  
2020 ◽  
Vol 142 (Suppl_3) ◽  
Author(s):  
Pratik Doshi ◽  
John Tanaka ◽  
Jedrek Wosik ◽  
Natalia M Gil ◽  
Martin Bertran ◽  
...  

Introduction: There is a need for innovative solutions to better screen and diagnose the 7 million patients with chronic heart failure. A key component of assessing these patients is monitoring fluid status by evaluating for the presence and height of jugular venous distension (JVD). We hypothesize that video analysis of a patient’s neck using machine learning algorithms and image recognition can identify the amount of JVD. We propose the use of high fidelity video recordings taken using a mobile device camera to determine the presence or absence of JVD, which we will use to develop a point of care testing tool for early detection of acute exacerbation of heart failure. Methods: In this feasibility study, patients in the Duke cardiac catheterization lab undergoing right heart catheterization were enrolled. RGB and infrared videos were captured of the patient’s neck to detect JVD and correlated with right atrial pressure on the heart catheterization. We designed an adaptive filter based on biological priors that enhances spatially consistent frequency anomalies and detects jugular vein distention, with implementation done on Python. Results: We captured and analyzed footage for six patients using our model. Four of these six patients shared a similar strong signal outliner within the frequency band of 95bpm – 200bpm when using a conservative threshold, indicating the presence of JVD. We did not use statistical analysis given the small nature of our cohort, but in those we detected a positive JVD signal the RA mean was 20.25 mmHg and PCWP mean was 24.3 mmHg. Conclusions: We have demonstrated the ability to evaluate for JVD via infrared video and found a relationship with RHC values. Our project is innovative because it uses video recognition and allows for novel patient interactions using a non-invasive screening technique for heart failure. This tool can become a non-invasive standard to both screen for and help manage heart failure patients.


2017 ◽  
Vol 40 (9) ◽  
pp. 489-497 ◽  
Author(s):  
Guang-Mao Liu ◽  
Dong-Hai Jin ◽  
Jian-Ye Zhou ◽  
Xi-Hang Jiang ◽  
Han-Song Sun ◽  
...  

A fully implantable axial left ventricular assist device LAP31 was developed for Chinese or other heart failure patients who need partial support. Based on the 5-Lpm total cardiac blood output of Chinese without heart failure disease, the design point of LAP31 was set to a flow rate of 3 Lpm with 100-mmHg pressure head. To achieve the required pressure head and good hemolytic performance, a structure that includes a spindly rotor hub and a diffuser with splitter and cantilevered main blades was developed. Computational fluid dynamics (CFD) was used to analyze the hydraulic and hemodynamic performance of LAP31. Then in vitro hydraulics experiments were conducted. The numerical simulation results show that LAP31 could generate a 1 to 8 Lpm flow rate with a 60.9 to 182.7 mmHg pressure head when the pump was rotating between 9,000 and 12,000 rpm. The average scalar shear stress of the blood pump was 21.7 Pa, and the average exposure time was 71.0 milliseconds. The mean hemolysis index of LAP31 obtained using Heuser's hemolysis model and Giersiepen's model was 0.220% and 3.89 × 105% respectively. After adding the splitter blades, the flow separation at the suction surface of the diffuser was reduced. The cantilever structure reduced the tangential velocity from 6.1 to 4.7–1.4 m/s within the blade gap by changing the blade gap from shroud to hub. Subsequently, the blood damage caused by shear stress was reduced. In conclusion, the hydraulic and hemolytic characteristics of the LAP31 are acceptable for partial support.


Sign in / Sign up

Export Citation Format

Share Document