Development of a Mathematical Model for Power Engineering Parts Deep Drawing from Two-layer Materials

Author(s):  
Sergii Shlyk ◽  
Tetiana Haikova
Author(s):  
Dietrich Bauer ◽  
Regine Krebs

Abstract For a deep drawing process some important controllable variables (factors) upon the maximum drawing force are analyzed to find a setting adjustment for these process factors that provides a very low force for the metal forming process. For this investigation an orthogonal array L18 with three-fold replication is used. To find the optimum of the process, the experimental results are analyzed in accordance with the robust-design-method according to Taguchi (Liesegang et. al., 1990). For this purpose, so-called Signal-to-Noise-ratios are calculated. The analysis of variance for this S/N-ratios leads to a mathematical model for the deep drawing process. This model allows to find the pressumed optimal settings of the investigated factors. In the following, a confirmation experiment is carried out by using these optimal settings. The maximum drawing force of the confirmation experiment does not correspond with the confidence interval, which was calculated by analysis of variance techniques. So the predicted optimum of the process does not lead to a metal forming process with very low deep drawing force. The comparison with a full factorial plan shows that there are interactions between the investigated factors. These interactions could not be discovered by the used orthogonal array. Thus the established mathematical model does not describe the relation between the factors and deep drawing force in accordance with the practical deep drawing conditions.


1994 ◽  
Vol 22 (3) ◽  
pp. 177-186 ◽  
Author(s):  
P. Burgholzer ◽  
O. Scherzer

In this paper a mathematical algorithm is studied to improve the deep-drawing quality of an aluminium sheet. The deep-drawing quality is usually expressed in terms of the normal anisotropie. In our mathematical model we use Taylor theory and ideal orientations to reformulate this problem as a nonlinear optimization problem for the normal anisotropie. Some numerical examples are presented.


2020 ◽  
Vol 34 (22n24) ◽  
pp. 2040133
Author(s):  
The-Thanh Luyen ◽  
Thi-Bich Mac ◽  
Tien-Long Banh ◽  
Duc-Toan Nguyen

Thermal-assisted machining (TAM) is an effective processing solution to improve productivity and product quality made from materials with high strength and hardness. This method is widely used in nonchip machining such as forging, stamping, deep drawing, etc. For the method of heating on the molds, it is possible to control local heat or uniform heat on the workpiece. However, the calculation of heat capacity, heat transfer as well as the heating time to achieve the temperature on the workpiece is necessary to design suitable molds and heating system. This study focuses on a heating system that uses single-sided thermostatic heating rods to heat the molds, verify the effect of the heating time on the temperature of the workpieces and then control the temperature on the workpieces at various heat levels through a heating control system. Thereby, this study proposes to build a mathematical model between temperature and heating time on the workpiece.


2008 ◽  
Author(s):  
Ishii Akira ◽  
Yoshida Narihiko ◽  
Hayashi Takafumi ◽  
Umemura Sanae ◽  
Nakagawa Takeshi
Keyword(s):  

Sign in / Sign up

Export Citation Format

Share Document