Generation of 0.5 to 0.6 Mega Gauss Pulse Magnetic Field for Magnetic Pulse Welding of High Strength Alloys

Author(s):  
Surender Kumar Sharma ◽  
Aravind JMMVS ◽  
Shobhna Mishra ◽  
Renu Rani ◽  
Sukant Mishra ◽  
...  

Author(s):  
Yingzi Chen ◽  
Zhiyuan Yang ◽  
Wenxiong Peng ◽  
Huaiqing Zhang

Magnetic pulse welding is a high-speed welding technology, which is suitable for welding light metal materials. In the magnetic pulse welding system, the field shaper can increase the service life of the coil and contribute to concentrating the magnetic field in the welding area. Therefore, optimizing the structure of the field shaper can effectively improve the efficiency of the system. This paper analyzed the influence of cross-sectional shape and inner angle of the field shaper on the ability of concentrating magnetic field via COMSOL software. The structural strength of various field shapers was also analyzed in ABAQUS. Simulation results show that the inner edge of the field shaper directly affects the deformation and welding effect of the tube. So, a new shape of field shaper was proposed and the experimental results prove that the new field shaper has better performance than the conventional field shaper.



Sensors ◽  
2020 ◽  
Vol 20 (20) ◽  
pp. 5925
Author(s):  
Voitech Stankevic ◽  
Joern Lueg-Althoff ◽  
Marlon Hahn ◽  
A. Erman Tekkaya ◽  
Nerija Zurauskiene ◽  
...  

The possibility of applying CMR-B-scalar sensors made from thin manganite films exhibiting the colossal magnetoresistance effect as a fast-nondestructive method for the evaluation of the quality of the magnetic pulse welding (MPW) process is investigated in this paper. This method based on magnetic field magnitude measurements in the vicinity of the tools and joining parts was tested during the electromagnetic compression and MPW of an aluminum flyer tube with a steel parent. The testing setup used for the investigation allowed the simultaneous measurement of the flyer displacement, its velocity, and the magnitude of the magnetic field close to the flyer. The experimental results and simulations showed that, during the welding of the aluminum tube with the steel parent, the maximum magnetic field in the gap between the field shaper and the flyer is achieved much earlier than the maximum of the current pulse of the coil and that the first half-wave pulse of the magnetic field has two peaks. It was also found that the time instant of the minimum between these peaks depends on the charging energy of the capacitors and is associated with the collision of the flyer with the parent. Together with the first peak maximum and its time-position, this characteristic could be an indication of the welding quality. These results were confirmed by simultaneous measurements of the flyer displacement and velocity, as well as a numerical simulation of the magnetic field dynamics. The relationship between the peculiarities of the magnetic field pulse and the quality of the welding process is discussed. It was demonstrated that the proposed method of magnetic field measurement during magnetic pulse welding in combination with subsequent peel testing could be used as a nondestructive method for the monitoring of the quality of the welding process.



Author(s):  
A. Guglielmetti ◽  
N. Buiron ◽  
D. Marceau ◽  
M. Rachik ◽  
C. Volat

Magnetic pulse process is used in the forming and welding processes. In order to predict the welding conditions, it is necessary to have an accurate modeling, which involves a coupling between magnetic and mechanical phenomena. In a first step, a numerical modeling of the magnetic field has been developed in the finite elements software ANSYS™, and the forces exerted on a tube have been predicted. The model has been validated by comparison with similar models. The influences of the different parameters have been studied. Then, the deformation of this tube has been predicted by a dynamical model in the finite elements software ABAQUS/Explicit™. As the tube shrinks, the mechanical and magnetic computings must be sequentially coupled in order to predict the forces exerted during the motion. Software MATLAB™ is used to couple the two models in the two softwares.



2014 ◽  
Vol 19 (1) ◽  
pp. 69-81 ◽  
Author(s):  
R. M. Miranda ◽  
B. Tomás ◽  
T. G. Santos ◽  
N. Fernandes

Magnetic Pulse Welding (MPW) applies the electromagnetic principles postulated in the XIXth century and later demonstrated. In recent years the process has been developed to meet highly demanding market needs involving dissimilar material joining, specially involving difficult-to-weld materials. It is a very high speed joining process that uses an electromagnetic force to accelerate one material against the other, resulting in a solid state weld with no external heat source and no thermal distortions. A high power source, the capacitor, a discharge switch and a coil constitute the minimum equipment necessary for this process. A high intensity current flowing through a coil near an electrically conductive material, locally produce an intense magnetic field that generates eddy currents in the flyer according to Lenz law. The induced electromotive force gives rise to a current whose magnetic field opposes the original change in magnetic flux. The effect of this secondary current moving in the primary magnetic field is the generation of a Lorentz force, which accelerates the flyer at a very high speed. If a piece of material is placed in the trajectory of the flyer, the impact will produce an atomic bond in a solid state weld. This paper discusses the fundamentals of the process in terms of phenomenology and analytical modeling and numerical simulation. Recent industrial applications are presented in terms of materials, joint configurations and real examples as well as advantages and disadvantages of the process.



2021 ◽  
Vol 65 ◽  
pp. 214-227
Author(s):  
Ziqin Yan ◽  
Ang Xiao ◽  
Xiaohui Cui ◽  
Yuanzheng Guo ◽  
Yuhong Lin ◽  
...  






2013 ◽  
Vol 213 (8) ◽  
pp. 1348-1354 ◽  
Author(s):  
R.N. Raoelison ◽  
N. Buiron ◽  
M. Rachik ◽  
D. Haye ◽  
G. Franz ◽  
...  


Sign in / Sign up

Export Citation Format

Share Document