Annual review of materials science, vol. 30, 2000 [Book Review]

2001 ◽  
Vol 17 (3) ◽  
pp. 70-70
Author(s):  
J.J. Shea ◽  
K.F. Schoch
Author(s):  
Elayne M. Thomas ◽  
Phong H. Nguyen ◽  
Seamus D. Jones ◽  
Michael L. Chabinyc ◽  
Rachel A. Segalman

Polymers that simultaneously transport electrons and ions are paramount to drive the technological advances necessary for next-generation electrochemical devices, including energy storage devices and bioelectronics. However, efforts to describe the motion of ions or electrons separately within polymeric systems become inaccurate when both species are present. Herein, we highlight the basic transport equations necessary to rationalize mixed transport and the multiscale materials properties that influence their transport coefficients. Potential figures of merit that enable a suitable performance benchmark in mixed conducting systems independent of end application are discussed. Practical design and implementation of mixed conducting polymers require an understanding of the evolving nature of structure and transport with ionic and electronic carrier density to capture the dynamic disorder inherent in polymeric materials. Expected final online publication date for the Annual Review of Materials Science, Volume 51 is July 2021. Please see http://www.annualreviews.org/page/journal/pubdates for revised estimates.


Author(s):  
Brenden W. Hamilton ◽  
Michael N. Sakano ◽  
Chunyu Li ◽  
Alejandro Strachan

Shock loading takes materials from ambient conditions to extreme conditions of temperature and nonhydrostatic stress on picosecond timescales. In molecular materials the fast loading results in temporary nonequilibrium conditions with overheated low-frequency modes and relatively cold, high-frequency, intramolecular modes; coupling the shock front with the material's microstructure and defects results in energy localization in hot spots. These processes can conspire to lead to a material response not observed under quasi-static loads. This review focuses on chemical reactions induced by dynamical loading, the understanding of which requires bringing together materials science, shock physics, and condensed matter chemistry. Recent progress in experiments and simulations holds the key to the answer of long-standing grand challenges with implications for the initiation of detonation and life on Earth. Expected final online publication date for the Annual Review of Materials Science, Volume 51 is August 2021. Please see http://www.annualreviews.org/page/journal/pubdates for revised estimates.


Author(s):  
Boris Kozinsky ◽  
David J. Singh

The performance of thermoelectric materials is determined by their electrical and thermal transport properties that are very sensitive to small modifications of composition and microstructure. Discovery and design of next-generation materials are starting to be accelerated by computational guidance. We review progress and challenges in the development of accurate and efficient first-principles methods for computing transport coefficients and illustrate approaches for both rapid materials screening and focused optimization. Particularly important and challenging are computations of electron and phonon scattering rates that enter the Boltzmann transport equations, and this is where there are many opportunities for improving computational methods. We highlight the first successful examples of computation-driven discoveries of high-performance materials and discuss avenues for tightening the interaction between theoretical and experimental materials discovery and optimization. Expected final online publication date for the Annual Review of Materials Science, Volume 51 is August 2021. Please see http://www.annualreviews.org/page/journal/pubdates for revised estimates.


Author(s):  
Daniel B. Miracle ◽  
Mu Li ◽  
Zhaohan Zhang ◽  
Rohan Mishra ◽  
Katharine M. Flores

Structural materials have lagged behind other classes in the use of combinatorial and high-throughput (CHT) methods for rapid screening and alloy development. The dual complexities of composition and microstructure are responsible for this, along with the need to produce bulk-like, defect-free materials libraries. This review evaluates recent progress in CHT evaluations for structural materials. High-throughput computations can augment or replace experiments and accelerate data analysis. New synthesis methods, including additive manufacturing, can rapidly produce composition gradients or arrays of discrete alloys-on-demand in bulk form, and new experimental methods have been validated for nearly all essential structural materials properties. The remaining gaps are CHT measurement of bulk tensile strength, ductility, and melting temperature and production of microstructural libraries. A search strategy designed for structural materials gains efficiency by performing two layers of evaluations before addressing microstructure, and this review closes with a future vision of the autonomous, closed-loop CHT exploration of structural materials. Expected final online publication date for the Annual Review of Materials Science, Volume 51 is August 2021. Please see http://www.annualreviews.org/page/journal/pubdates for revised estimates.


1973 ◽  
Vol 120 (5) ◽  
pp. 167C
Author(s):  
R. A. Huggins ◽  
R. H. Bube ◽  
R. W. Roberts ◽  
Julius Klerer

Sign in / Sign up

Export Citation Format

Share Document