Electronic, Ionic, and Mixed Conduction in Polymeric Systems

Author(s):  
Elayne M. Thomas ◽  
Phong H. Nguyen ◽  
Seamus D. Jones ◽  
Michael L. Chabinyc ◽  
Rachel A. Segalman

Polymers that simultaneously transport electrons and ions are paramount to drive the technological advances necessary for next-generation electrochemical devices, including energy storage devices and bioelectronics. However, efforts to describe the motion of ions or electrons separately within polymeric systems become inaccurate when both species are present. Herein, we highlight the basic transport equations necessary to rationalize mixed transport and the multiscale materials properties that influence their transport coefficients. Potential figures of merit that enable a suitable performance benchmark in mixed conducting systems independent of end application are discussed. Practical design and implementation of mixed conducting polymers require an understanding of the evolving nature of structure and transport with ionic and electronic carrier density to capture the dynamic disorder inherent in polymeric materials. Expected final online publication date for the Annual Review of Materials Science, Volume 51 is July 2021. Please see http://www.annualreviews.org/page/journal/pubdates for revised estimates.

Author(s):  
Boris Kozinsky ◽  
David J. Singh

The performance of thermoelectric materials is determined by their electrical and thermal transport properties that are very sensitive to small modifications of composition and microstructure. Discovery and design of next-generation materials are starting to be accelerated by computational guidance. We review progress and challenges in the development of accurate and efficient first-principles methods for computing transport coefficients and illustrate approaches for both rapid materials screening and focused optimization. Particularly important and challenging are computations of electron and phonon scattering rates that enter the Boltzmann transport equations, and this is where there are many opportunities for improving computational methods. We highlight the first successful examples of computation-driven discoveries of high-performance materials and discuss avenues for tightening the interaction between theoretical and experimental materials discovery and optimization. Expected final online publication date for the Annual Review of Materials Science, Volume 51 is August 2021. Please see http://www.annualreviews.org/page/journal/pubdates for revised estimates.


Author(s):  
Brenden W. Hamilton ◽  
Michael N. Sakano ◽  
Chunyu Li ◽  
Alejandro Strachan

Shock loading takes materials from ambient conditions to extreme conditions of temperature and nonhydrostatic stress on picosecond timescales. In molecular materials the fast loading results in temporary nonequilibrium conditions with overheated low-frequency modes and relatively cold, high-frequency, intramolecular modes; coupling the shock front with the material's microstructure and defects results in energy localization in hot spots. These processes can conspire to lead to a material response not observed under quasi-static loads. This review focuses on chemical reactions induced by dynamical loading, the understanding of which requires bringing together materials science, shock physics, and condensed matter chemistry. Recent progress in experiments and simulations holds the key to the answer of long-standing grand challenges with implications for the initiation of detonation and life on Earth. Expected final online publication date for the Annual Review of Materials Science, Volume 51 is August 2021. Please see http://www.annualreviews.org/page/journal/pubdates for revised estimates.


Author(s):  
Daniel B. Miracle ◽  
Mu Li ◽  
Zhaohan Zhang ◽  
Rohan Mishra ◽  
Katharine M. Flores

Structural materials have lagged behind other classes in the use of combinatorial and high-throughput (CHT) methods for rapid screening and alloy development. The dual complexities of composition and microstructure are responsible for this, along with the need to produce bulk-like, defect-free materials libraries. This review evaluates recent progress in CHT evaluations for structural materials. High-throughput computations can augment or replace experiments and accelerate data analysis. New synthesis methods, including additive manufacturing, can rapidly produce composition gradients or arrays of discrete alloys-on-demand in bulk form, and new experimental methods have been validated for nearly all essential structural materials properties. The remaining gaps are CHT measurement of bulk tensile strength, ductility, and melting temperature and production of microstructural libraries. A search strategy designed for structural materials gains efficiency by performing two layers of evaluations before addressing microstructure, and this review closes with a future vision of the autonomous, closed-loop CHT exploration of structural materials. Expected final online publication date for the Annual Review of Materials Science, Volume 51 is August 2021. Please see http://www.annualreviews.org/page/journal/pubdates for revised estimates.


2021 ◽  
Vol 55 (1) ◽  
Author(s):  
Nikhil Mishra ◽  
Carl-Philipp Heisenberg

Multicellular organisms develop complex shapes from much simpler, single-celled zygotes through a process commonly called morphogenesis. Morphogenesis involves an interplay between several factors, ranging from the gene regulatory networks determining cell fate and differentiation to the mechanical processes underlying cell and tissue shape changes. Thus, the study of morphogenesis has historically been based on multidisciplinary approaches at the interface of biology with physics and mathematics. Recent technological advances have further improved our ability to study morphogenesis by bridging the gap between the genetic and biophysical factors through the development of new tools for visualizing, analyzing, and perturbing these factors and their biochemical intermediaries. Here, we review how a combination of genetic, microscopic, biophysical, and biochemical approaches has aided our attempts to understand morphogenesis and discuss potential approaches that may be beneficial to such an inquiry in the future. Expected final online publication date for the Annual Review of Genetics, Volume 55 is November 2021. Please see http://www.annualreviews.org/page/journal/pubdates for revised estimates.


Author(s):  
Albert A. Voskanyan ◽  
Alexandra Navrotsky

A renaissance of interest in crystallographic shear structures and our recent work in this remarkable class of materials inspired this review. We first summarize the geometrical aspects of shear plane formation and possible transformations in ReO3, rutile, and perovskite-based structures. Then we provide a mechanistic overview of crystallographic shear formation, plane ordering, and propagation. Next we describe the energetics of planar defect formation and interaction, equilibria between point and extended defect structures, and thermodynamic stability of shear compounds. Finally, we emphasize the remaining challenges and propose future directions in this exciting area. Expected final online publication date for the Annual Review of Materials Science, Volume 51 is July 2021. Please see http://www.annualreviews.org/page/journal/pubdates for revised estimates.


Author(s):  
Lucy Clark ◽  
Aly H. Abdeldaim

Quantum spin liquids are unique quantum states of matter predicted to arise in low-dimensional, frustrated, and quantum magnetic systems. Compared with conventional ferromagnetic and antiferromagnetic states, quantum spin liquids are expected to display a variety of novel and exotic properties, making their realization in materials a highly appealing prospect. While an unambiguous realization of this long-sought-after state remains elusive, a growing number of materials candidates show promise in revealing the properties of quantum spin liquids. In this review, we present some of the key challenges and current opportunities in the synthesis, characterization, and understanding of quantum spin liquids from the perspective of the broad and interdisciplinary field of materials research. Expected final online publication date for the Annual Review of Materials Science, Volume 51 is August 2021. Please see http://www.annualreviews.org/page/journal/pubdates for revised estimates.


2021 ◽  
Vol 55 (1) ◽  
Author(s):  
Chunyu Liao ◽  
Chase L. Beisel

CRISPR-Cas adaptive immune systems in bacteria and archaea utilize short CRISPR RNAs (crRNAs) to guide sequence-specific recognition and clearance of foreign genetic material. Multiple crRNAs are stored together in a compact format called a CRISPR array that is transcribed and processed into the individual crRNAs. While the exact processing mechanisms vary widely, some CRISPR-Cas systems, including those encoding the Cas9 nuclease, rely on a trans-activating crRNA (tracrRNA). The tracrRNA was discovered in 2011 and was quickly co-opted to create single-guide RNAs as core components of CRISPR-Cas9 technologies. Since then, further studies have uncovered processes extending beyond the traditional role of tracrRNA in crRNA biogenesis, revealed Cas nucleases besides Cas9 that are dependent on tracrRNAs, and established new applications based on tracrRNA engineering. In this review, we describe the biology of the tracrRNA and how its ongoing characterization has garnered new insights into prokaryotic immune defense and enabled key technological advances. Expected final online publication date for the Annual Review of Genetics, Volume 55 is November 2021. Please see http://www.annualreviews.org/page/journal/pubdates for revised estimates.


Author(s):  
Katherine T. Faber ◽  
Francesca Casadio ◽  
Admir Masic ◽  
Luc Robbiola ◽  
Marc Walton

Cultural heritage materials, ranging from archaeological objects and sites to fine arts collections, are often characterized through their life cycle. In this review, the fundamentals and tools of materials science are used to explore such life cycles—first, via the origins of the materials and methods used to produce objects of function and artistry, and in some cases, examples of exceptional durability. The findings provide a window on our cultural heritage. Further, they inspire the design of sustainable materials for future generations. Also explored in this review are alteration phenomena over intervals as long as millennia or as brief as decades. Understanding the chemical processes that give rise to corrosion, passivation, or other degradation in chemical and physical properties can provide the foundation for conservation treatments. Finally, examples of characterization techniques that have been invented or enhanced to afford studies of cultural heritage materials, often nondestructively, are highlighted. Expected final online publication date for the Annual Review of Materials Science, Volume 51 is July 2021. Please see http://www.annualreviews.org/page/journal/pubdates for revised estimates.


Author(s):  
Franziska Schmidt ◽  
Peter Hosemann ◽  
Raluca O. Scarlat ◽  
Daniel K. Schreiber ◽  
John R. Scully ◽  
...  

The next generation of nuclear reactors will expose materials to conditions that, in some cases, are even more extreme than those in current fission reactors, inevitably leading to new materials science challenges. Radiation-induced damage and corrosion are two key phenomena that must be understood both independently and synergistically, but their interactions are often convoluted. In the light water reactor community, a tremendous amount of work has been done to illuminate irradiation-corrosion effects, and similar efforts are under way for heavy liquid metal and molten salt environments. While certain effects, such as radiolysis and irradiation-assisted stress corrosion cracking, are reasonably well established, the basic science of how irradiation-induced defects in the base material and the corrosion layer influence the corrosion process still presents many unanswered questions. In this review, we summarize the work that has been done to understand these coupled extremes, highlight the complex nature of this problem, and identify key knowledge gaps. Expected final online publication date for the Annual Review of Materials Science, Volume 51 is August 2021. Please see http://www.annualreviews.org/page/journal/pubdates for revised estimates.


Sign in / Sign up

Export Citation Format

Share Document