Sensitivity Improvement of Thermal Expansion-Based Angular Motion Sensors with the Parallel Distribution of Heaters

Author(s):  
Huahuang Luo ◽  
Jose Cabot ◽  
Izhar ◽  
Yi-Kuen Lee
Author(s):  
Huahuang Luo ◽  
Mingzheng Duan ◽  
Hadi Tavakkoli ◽  
Jose Cabot ◽  
Yi-Kuen Lee

Sensors ◽  
2020 ◽  
Vol 20 (9) ◽  
pp. 2487 ◽  
Author(s):  
Yasemin Durukan ◽  
Michail Shevelko ◽  
Aleksandr Peregudov ◽  
Ekaterina Popkova ◽  
Sergey Shevchenko

We study the effects of medium rotation on bulk acoustic wave (BAW) propagation. For a theoretical analysis of the BAW propagation characteristics, a motion equation for the plane harmonic waves propagating orthogonal to the rotation axis of the propagation medium was analytically resolved. We found that during medium rotation, the polarization of the waves becomes elliptical with the ratio of the polarization ellipse axes explicitly proportional to the angular velocity of the medium rotation, thereby opening the way for the design of sensitive elements (SE) for perspective angular motion sensors (AMS). Next, an analytical dependence of the SE informative parameter on the Poisson’s ratio of the acoustic duct material was obtained. The rotation effect on the dispersion of BAW propagation velocity was studied. Two approaches to the perspective SE design were proposed. An experimental study of a specially designed test assembly and SE model demonstrated high correlation with theoretical predictions and provided an estimate of a potential SE. Therefore, we believe that the study of acoustic wave propagation under nonclassical conditions is a promising direction for prospective solid-state AMS on based on BAW polarization effects design.


1975 ◽  
Vol 26 ◽  
pp. 87-92
Author(s):  
P. L. Bender

AbstractFive important geodynamical quantities which are closely linked are: 1) motions of points on the Earth’s surface; 2)polar motion; 3) changes in UT1-UTC; 4) nutation; and 5) motion of the geocenter. For each of these we expect to achieve measurements in the near future which have an accuracy of 1 to 3 cm or 0.3 to 1 milliarcsec.From a metrological point of view, one can say simply: “Measure each quantity against whichever coordinate system you can make the most accurate measurements with respect to”. I believe that this statement should serve as a guiding principle for the recommendations of the colloquium. However, it also is important that the coordinate systems help to provide a clear separation between the different phenomena of interest, and correspond closely to the conceptual definitions in terms of which geophysicists think about the phenomena.In any discussion of angular motion in space, both a “body-fixed” system and a “space-fixed” system are used. Some relevant types of coordinate systems, reference directions, or reference points which have been considered are: 1) celestial systems based on optical star catalogs, distant galaxies, radio source catalogs, or the Moon and inner planets; 2) the Earth’s axis of rotation, which defines a line through the Earth as well as a celestial reference direction; 3) the geocenter; and 4) “quasi-Earth-fixed” coordinate systems.When a geophysicists discusses UT1 and polar motion, he usually is thinking of the angular motion of the main part of the mantle with respect to an inertial frame and to the direction of the spin axis. Since the velocities of relative motion in most of the mantle are expectd to be extremely small, even if “substantial” deep convection is occurring, the conceptual “quasi-Earth-fixed” reference frame seems well defined. Methods for realizing a close approximation to this frame fortunately exist. Hopefully, this colloquium will recommend procedures for establishing and maintaining such a system for use in geodynamics. Motion of points on the Earth’s surface and of the geocenter can be measured against such a system with the full accuracy of the new techniques.The situation with respect to celestial reference frames is different. The various measurement techniques give changes in the orientation of the Earth, relative to different systems, so that we would like to know the relative motions of the systems in order to compare the results. However, there does not appear to be a need for defining any new system. Subjective figures of merit for the various system dependon both the accuracy with which measurements can be made against them and the degree to which they can be related to inertial systems.The main coordinate system requirement related to the 5 geodynamic quantities discussed in this talk is thus for the establishment and maintenance of a “quasi-Earth-fixed” coordinate system which closely approximates the motion of the main part of the mantle. Changes in the orientation of this system with respect to the various celestial systems can be determined by both the new and the conventional techniques, provided that some knowledge of changes in the local vertical is available. Changes in the axis of rotation and in the geocenter with respect to this system also can be obtained, as well as measurements of nutation.


Author(s):  
J. Cooper ◽  
O. Popoola ◽  
W. M. Kriven

Nickel sulfide inclusions have been implicated in the spontaneous fracture of large windows of tempered plate glass. Two alternative explanations for the fracture-initiating behaviour of these inclusions have been proposed: (1) the volume increase which accompanies the α to β phase transformation in stoichiometric NiS, and (2) the thermal expansion mismatch between the nickel sulfide phases and the glass matrix. The microstructure and microchemistry of the small inclusions (80 to 250 μm spheres), needed to determine the cause of fracture, have not been well characterized hitherto. The aim of this communication is to report a detailed TEM and EDS study of the inclusions.


1995 ◽  
Vol 05 (C8) ◽  
pp. C8-1109-C8-1113
Author(s):  
T.R. Finlayson, ◽  
M. Liu ◽  
T.F. Smith
Keyword(s):  

1978 ◽  
Vol 39 (C6) ◽  
pp. C6-406-C6-407 ◽  
Author(s):  
T. Fukase ◽  
T. Kobayashi ◽  
M. Isino ◽  
N. Toyota ◽  
Y. Muto

Sign in / Sign up

Export Citation Format

Share Document