An electromagnetic signal propagation in a transient magnetized plasma with a time-varying external magnetic field

Author(s):  
A.G. Nerukh ◽  
K.M. Yemelyanov
2017 ◽  
Vol 31 (31) ◽  
pp. 1750239 ◽  
Author(s):  
Arafa H. Aly ◽  
Hussein A. Elsayed ◽  
Ayman A. Ameen ◽  
S. H. Mohamed

In this paper, we theoretically investigate the transmittance characteristics of one-dimensional defective photonic crystal in microwave radiations based on the fundamentals of the characteristic matrix method. Here, the defect layer is magnetized plasma. The numerical results show the appearance of defect peaks inside the Photonic Band Gap. The external magnetic field has a significant effect on the permittivity of the defect layer. Therefore, the position and intensity of the defect peak are strongly affected by the external magnetic field. Moreover, we have investigated the different parameters on the defect peaks as the plasma density, the thickness of the plasma layer and the angle of incidence. Wherefore, the proposed structure could be the cornerstone for many applications in microwave regions such as narrowband filters.


Open Physics ◽  
2003 ◽  
Vol 1 (1) ◽  
Author(s):  
Nickolay Mikheev ◽  
Elena Narynskaya

AbstractThe neutrino-electron scattering in a dense degenerate magnetized plasma under the conditions μ 2 > 2eB ≫ μE is investigated. The volume density of the neutrino energy and momentum losses due to this process are calculated. The results we have obtained demonstrate that plasma in the presence of an external magnetic field is more transparent for neutrino than for non-magnetized plasma. It is shown that neutrino scattering under conditions considered does not lead to the neutrino force acting on plasma.


2002 ◽  
Vol 15 (2) ◽  
pp. 165-173 ◽  
Author(s):  
Fedor Fedotov ◽  
Alexander Nerukh ◽  
Igor Scherbatko

In this paper the finite differences in time domain and the integral equation in time domain approaches for calculation of an electromagnetic signal propagation in an active media are investigated, accuracy and stability comparison of these methods are examined. Special computer modeling software is developed for realization of the numerical experiments.


2018 ◽  
Vol 4 (1) ◽  
pp. 25-28
Author(s):  
Геннадий Кичигин ◽  
Gennadiy Kichigin

The paper presents solutions of two-fluid magnetic hydrodynamics equations describing small-scale fast magnetosonic stable waves — nonlinear whist-lers moving in a cold magnetized plasma at an angle α to the external magnetic field. At the fixed angle α, the Alfvén Mach number of the whistlers has a narrow range of allowed values. It has been found that when passing from extremely small Mach numbers to ex-tremely large ones, amplitudes and spatial structure of wave velocity components and whistler magnetic field change significantly. The range of angles of the motion direction of whistlers with respect to direction of the the external magnetic field vector is determined. Within this range, the obtained approximate analytical and numerical solutions are in satisfactory agreement.


2005 ◽  
Vol 877 ◽  
Author(s):  
Derek Halverson ◽  
Ben Yellen ◽  
Gary Friedman

AbstractA novel method is proposed whereby non-magnetic objects can be moved along a surface at the microscale and nanoscale. It uses a negative magnetophoretic force, explained in the caption for figure one, on the non-magnetic objects which results from stabilized 10nm diameter iron oxide particles (ferrofluid) being attracted to regions of field maxima around magnetic islands on a surface, which pushes the non-magnetic objects to regions of field minima. By varying an external magnetic field we can control where these minima are and thus control how objects will position themselves with static fields and by using rotating time varying fields we can control how they move across the surface. This method does not require the objects to be initially in contact with the surface, as they will be pulled down to the surface from solution. While this paper deals with beads, any arbitrarily shaped object should be manipuable using this method. Additionally, while we address non-magnetic objects in this work similar methods could easily manipulate objects that are magnetic.


2016 ◽  
Vol 34 (2) ◽  
pp. 378-383 ◽  
Author(s):  
N.K. Verma ◽  
P. Jha

AbstractA one-dimensional (1D) numerical model for studying enhanced terahertz (THz) radiation generation by mixing of ordinary and extraordinary modes of two-color laser pulses propagating in magnetized plasma has been presented. The direction of the static external magnetic field is such that one of the two laser pulses propagates in the extraordinary mode, while the other pulse propagates in the ordinary mode, through homogeneous plasma. A transverse electromagnetic wave with frequency in the THz range is generated due to the presence of the external magnetic field. It is observed that larger amplitude THz radiation can be generated by mixing of the ordinary and extraordinary modes of the two-color laser pulses as compared with the single laser pulse propagating in the extraordinary mode. Further, 2D simulations using the XOOPIC code show that the fields obtained via simulation study are compatible with those obtained from the numerical model.


1984 ◽  
Vol 31 (2) ◽  
pp. 231-238 ◽  
Author(s):  
P. K. Shukla ◽  
M. Y. Yu

Linear and nonlinear mechanisms for generating convective cells with finite but small parallel (to the external magnetic field B0) wavelength are presented. The problems of mode-coupling as well as quasi-steady nonlinear mode structures are analytically studied. Possible applications in space plasmas are discussed.


2001 ◽  
Vol 11 (1) ◽  
pp. 1988-1991 ◽  
Author(s):  
T. Ohyama ◽  
H. Shimizu ◽  
M. Tsuda ◽  
A. Ishiyama

Sign in / Sign up

Export Citation Format

Share Document