Convergence of the Galerkin method for numerical calculation of the guided modes of an integrated optical guide

Author(s):  
E. Kartchevski
Author(s):  
Changping Chen ◽  
Yejie Jiang ◽  
Li Hong ◽  
Liming Dai

In this article, based on the Euler-Bernoulli hypothesis and the Galerkin method, ananalysis of the nonlinear dynamic stability for a clamped-guided piezoelectric laminated microbeam under both a periodic axial force and a symmetric electrostatic load is presented. By using the incremental harmonic balanced method (IHBM), the boundary of the principal region of instability is got. In the numerical calculation, the effect of the environmental damping, geometric nonlinear, piezoelectric effect and the symmetric electrostatic load on the principal region of instability is discussed.


1979 ◽  
Vol 44 (10) ◽  
pp. 2908-2914 ◽  
Author(s):  
Ondřej Wein

The problem of the oscillatory flow of pseudoplastic liquid in vicinity of the infinitely long horizontal plane is formulated in stresses. For Re i.e. for conditions of oscillatory boundary layer the problem is solved approximately by the Galerkin method.


Mathematics ◽  
2020 ◽  
Vol 9 (1) ◽  
pp. 78
Author(s):  
Haifa Bin Jebreen ◽  
Fairouz Tchier

Herein, an efficient algorithm is proposed to solve a one-dimensional hyperbolic partial differential equation. To reach an approximate solution, we employ the θ-weighted scheme to discretize the time interval into a finite number of time steps. In each step, we have a linear ordinary differential equation. Applying the Galerkin method based on interpolating scaling functions, we can solve this ODE. Therefore, in each time step, the solution can be found as a continuous function. Stability, consistency, and convergence of the proposed method are investigated. Several numerical examples are devoted to show the accuracy and efficiency of the method and guarantee the validity of the stability, consistency, and convergence analysis.


2021 ◽  
Vol 37 ◽  
pp. 346-358
Author(s):  
Fuchun Yang ◽  
Xiaofeng Jiang ◽  
Fuxin Du

Abstract Free vibrations of rotating cylindrical shells with distributed springs were studied. Based on the Flügge shell theory, the governing equations of rotating cylindrical shells with distributed springs were derived under typical boundary conditions. Multicomponent modal functions were used to satisfy the distributed springs around the circumference. The natural responses were analyzed using the Galerkin method. The effects of parameters, rotation speed, stiffness, and ratios of thickness/radius and length/radius, on natural response were also examined.


Sign in / Sign up

Export Citation Format

Share Document